
Qualcomm Gobi devices in Linux based systems

Aleksander Morgado
aleksander@lanedo.com

December 10, 2013

Copyright c⃝2013 Lanedo GmbH. cba

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
http://creativecommons.org/licenses/by-sa/4.0

mailto:aleksander@lanedo.com
http://creativecommons.org/licenses/by-sa/4.0


1 Introduction

For a very long time, mobile broadband modems have been controlled using mobile-specific AT protocol ex-
tensions. These extensions were usually defined by the implementors of the mobile broadband technology
standards (e.g. the European Telecommunication Standards Institute, ETSI GSM 07.07, later 3GPP TS 27.0071),
or by device vendors themselves (e.g. Qualcomm extensions for CDMA/EV-DO devices). These modems
would inherit most of the logic that was applicable to dial-up modems. This includes the AT protocol itself,
but also the requirement of a PPP2 session to be established to serve as an interface between the computer and
the modem (or even the network itself).

Once requirements in the connection throughput were increased (e.g. LTE/4G data rates), and newer tech-
nologies appeared to interface between a device and the host computer (e.g. USB), manufacturers started
to implement their own new protocols to control mobile broadband devices. The AT+PPP pair became just a
legacy approach which is still available in most of the devices, but purely for compatibility with systems which
do not talk the new protocols yet.

One of those new protocols implemented to control mobile broadband modems is the Qualcomm MSM Interface
(QMI) protocol developed by Qualcomm, which can be used in Linux kernel based operating systems through
two mutually exclusive kernel drivers: ’GobiNet’ and ’qmi wwan’. These two drivers take completely different
approaches to handle the protocol; GobiNet is a very complex driver which implements within the kernel
most of the core protocol logic, while qmi wwan just leaves all those tasks to user-space processes (therefore
keeping the kernel bits as small as possible).

The purpose of this document is to give a primer of the QMI protocol, and show the differences, advantages
and drawbacks of using either the GobiNet or qmi wwan kernel drivers and how user-space applications
interact with them.

Kernel driver Owner Project User-space
GobiNet Qualcomm Code Aurora GobiAPI
qmi wwan Community Linux kernel libqmi, ofono, uqmi, ...

1http://www.3gpp.org/DynaReport/27007.htm
2Point-to-Point Protocol

1

http://www.3gpp.org/DynaReport/27007.htm


2 Gobi and QMI

2.1 Gobi modules

Gobi3 modules are mobile broadband modems designed by Qualcomm, although devices with these chipsets
are also often manufactured by other vendors, like Sierra Wireless or Novatel. These modems are able to work
with very different 2G/3G/4G radio access technologies, including those defined by both 3GPP (GSM, GPRS,
UMTS, HSPA, LTE, ...) and 3GPP2 (CDMA-1x, EV-DO, ...).

Unlike many other mobile broadband modems, and even if the devices actually expose AT-capable serial
ports, Gobi modules are not designed to be controlled with AT commands. Instead, Qualcomm designed
a new Qualcomm MSM Interface (QMI) binary protocol to communicate with the modem. This protocol can
make use of the USB subsystem (among others) to transfer requests, responses and indications between the
host and the device, and therefore doesn’t rely on a serial port, as is the case with AT and DM/DIAG4.

The other major advantage of relying on the USB subsystem is the fact that there is no longer the need to setup
a PPP session over a serial port to get a connection established. Instead, packets can be sent and received over
an ECM/NCM5 like USB interface exposed by the device. The benefits of using a real network interface instead
of PPP over a serial port are not only about being easier to manage; the actual throughput achievable with a
network interface is much higher as the overhead introduced by PPP is fully avoided. In fact, all modems that
need to handle the data rates available with a technology like LTE do require such a network interface.

2.2 The QMI protocol

The QMI protocol defines different services, each of them related to different actions that may be requested
from the modem. For example, the DMS (Device Management) service provides actions to load device infor-
mation, the NAS (Network Access) service provides actions to register in the network, and the WDS (Wireless
Data) service allows setting up IP connections. Before using a service, the user needs to handle the creation
of clients for those services by allocating/deallocating client IDs using the generic always-on CTL (control)
service.

Each service in the protocol defines Requests and Responses as well as Indications. Each pair of request and
response has a matching ID which lets the user concatenate multiple requests and get out-of-order responses
that can be matched through the common ID afterwards. Indications arrive as unsolicited messages, sent either
to a specific client or as a broadcast message to all the clients of a given service.

Finally, each message in the protocol defines a set of input (in requests) and output (in responses and indica-
tions) arguments, specified as Type-Length-Value (TLV) fields. Some of these are defined to be mandatory,
others are optional, and others are only mandatory if some other argument is available and has a given value.
The Type of the field defines not only which field it is, but also the format of the value to be expected (e.g. an
integer, or a string, or some other supported format).

Just this level of organization outlined in the previous paragraphs makes the communication with the modem
much more clear, as the messages are transferred in an organized way and are self-contained packs of infor-
mation with a predefined format. So, even if more complex, it is far more powerful and less error-prone than
sending and receiving text-based AT strings via a serial port.

3http://www.qualcomm.com/gobi
4DM/DIAG is an older binary protocol also developed by Qualcomm
5Ethernet Control Model/Network Control Model

2

http://www.qualcomm.com/gobi


3 Kernel space

Being able to control Gobi modules in Linux-based operating systems has been possible for a long time now,
using the ’GobiNet’ GPL/BSD dual-licensed kernel driver developed by Qualcomm, which is published under
the Linux Foundation’s CodeAurora6 initiative. In late 2010, there was an attempt7 to have in the upstream
kernel a Linux-styled rewrite of the original driver, but it never got through for different reasons.

The biggest concern of the Linux kernel developers was that the GobiNet driver does much more than what a
usual Linux kernel driver does. A software driver should, if possible, just provide access to the capabilities of
a hardware device in a generic manner; or in other words, using the device in one way or another is a task of
user-space processes, not a task of the kernel. Also, the smaller the driver is the more robust the system is, as
code running in kernel space can cause errors in the whole system.

In order to handle the issue, upstream kernel developers took a fully different approach and developed instead
a new ’qmi wwan’ driver, simpler in orders of magnitude and much easier to maintain, while leaving all the
complex logic to user-space processes, which are usually more flexible and where it is easier to change behavior
or fix errors. This new driver has been available since Linux 3.4.

This conflict between kernel drivers is uncommon because of how the QMI protocol is defined. It’s harder to
draw the line between what should be kernel or user space based tasks. The following sections try to detail
where that line was drawn in both approaches.

3.1 Gobi as a USB device

A Gobi module connected to a Linux-based system via a USB connection will be exposed as any other standard
USB device, with multiple interfaces and multiple endpoints for each interface8. Each of the interfaces exposed
serves a different purpose: one of the interfaces gives may access to a serial port, while another one gives
access to the QMI port and its corresponding net port. It is worth noting that different devices will expose
the QMI-capable interface with different interface numbers, so the kernel will always need to have a table
of rules which matches a given device (e.g. given its USB vendor ID or product ID) with its corresponding
QMI-capable interface number9.

A USB interface which is capable of providing both QMI and network packet transfers will expose four end-
points:

• CONTROL: The default bi-directional endpoint, which will be used to send and receive QMI messages
embedded within SendEncapsulatedCommand and GetEncapsulatedResponse requests as defined by the
CDC10 USB class.

• INTERRUPT IN: The endpoint used by the device to notify that incoming QMI messages can be read.

• BULK IN: Bulk endpoint for IP packets sent from the device to the host.

• BULK OUT: Bulk endpoint for IP packets sent from the host to the device.

It is worth noting that this previous interface layout is the most common one, but not unique. Some devices
may export the QMI and net capabilities using different interfaces, specifying which are the expected ones in
a Union CDC functional descriptor on the control interface.

6https://www.codeaurora.org
7http://thread.gmane.org/gmane.linux.network/174190
8For completeness, interfaces are also grouped in configurations, and each interface may have different alternate settings.
9If multiple alternate settings are given for an interface, the kernel will also need to decide which one provides access to the required

endpoints.
10Universal Serial Bus Class Definitions for Communication Devices

3

https://www.codeaurora.org
http://thread.gmane.org/gmane.linux.network/174190


3.2 Non-USB QMI devices

Qualcomm Snapdragon11 processors include both the CPU and the mobile broadband telephony stack on the
same chip (System-On-Chip12); i.e. there isn’t a separate chip implementing the 3G/4G connectivity. In this
kind of setup, the communication between the kernel and the stack is done using shared memory (SMD),
instead of relying on a USB connection. This setup is left out of the scope of this document, as there is little
information about how this is really managed.

3.3 GobiNet

As previously noted, GobiNet is the driver developed by Qualcomm to manage QMI-capable modems, and
is not available in the upstream Linux kernel. Being an out-of-tree module wouldn’t be so problematic if the
code base was updated for each new kernel release (important if USB driver changes are made upstream) and
accessible all the time. Sadly, the source code repository is private and the driver releases are not aligned to
the upstream kernel ones. This issue alone comes with several side-effects:

• Users wanting to install the GobiNet driver will, very likely, need to adapt the code of the driver for
the kernel they are using; unless they use a kernel which was released before the actual driver and the
developers included support for that kernel (e.g. back-porting features and bug fixes from future kernels
releases they may want or need). It is obvious that not every user is a kernel developer, not even a C
developer, so the changes being done in the user’s tree have no peer review or testing for correctness or
stability before used.

• The published driver supports not only the latest kernel at that time; it also should support kernels
released before. When a driver is maintained within the upstream kernel tree this is of course not needed.
Needing to support previous kernel versions make the code of the driver full of code sections which are
only applicable to different kernel versions, increasing its complexity.

• The GobiNet driver is maintained by Qualcomm, and only Qualcomm manufactured devices are han-
dled, and not even all available ones. Adding support for a new device requires, at least, to modify the
USB vendor ID and product ID table of allowed devices in the GobiNet driver itself.

• Every other non-Qualcomm manufacturer which produces modems based on Gobi chipsets ends up
providing to their users a different version of the GobiNet driver; e.g. adjusting the expected layout of
the USB interfaces, and obviously including their own set of VID/PIDs.

3.3.1 Architecture

The GobiNet driver takes care of all the four endpoints exposed in the QMI/net interface, and sets up two
devices to be available in user-space (see Figure 1).

The driver creates a /dev/qcqmiX character device which acts as the control interface of the modem, handling
the QMI protocol. It will take care of receiving QMI messages from user-space, packing them into SendEncap-
sulatedCommand requests and sending them to the modem through USB. In the same way, it will receive QMI
messages from the modem with GetEncapsulatedResponse requests, and it will send them back to user-space.
The driver will use both the CONTROL and INTERRUPT endpoints for this purpose.

The driver also collects both BULK IN and BULK OUT endpoints and uses the usbnet generic driver in the kernel
to expose a usbX network interface. The GobiNet driver can be seen as inheriting from usbnet, i.e. providing
the same functionality and reusing parts of usbnet, but handling the internal logic in a way specific to Gobi
modules.

11http://www.qualcomm.com/snapdragon
12http://en.wikipedia.org/wiki/System on a chip

4

http://www.qualcomm.com/snapdragon
http://en.wikipedia.org/wiki/System_on_a_chip


Figure 1: GobiNet in the Linux kernel

3.3.2 The CTL service

The most important feature of the GobiNet kernel driver is that it completely hides the usage of the CTL (con-
trol) QMI service to user-space. Every action that can be performed by the CTL service will be done exclusively
by the driver, including:

• Version info: Querying which QMI service versions are supported by the device.

• Client allocation: Allocating different Client IDs for different services.

• Client release: Releasing the Client IDs that were previously allocated.

• Data format: Configuring the format of network packets to be transferred through the data network
interface.

The whole driver is organized around the need to hide this service to user-space, and therefore it requires a
high complexity to handle all the different features provided by the protocol. For example, the driver needs to
take care of forwarding Responses and non-broadcast Indications only to the user-space process which acquired
a given Client ID for a given service. But, from a different perspective, this also means that multiple user-space
processes can share the access to a single QMI device without interferring with each other.

3.3.3 Device initialization

Upon detection of a new QMI capable modem, the kernel driver will perform several actions before exposing
the character and network devices to user-space. One of such operations is making sure that the modem
is ready to talk QMI, which is accomplished by a periodic transmission of a CTL Version Info request until
the modem replies with a correct response. Once the modem replies correctly, the driver will also create a
temporary DMS (Device Management Service) client to gather the MEID13 of the hardware modem (which
will make it available through an ioctl command), and will also set up an internal WDS (Wireless Data Service)
client to gather network transfer statistics (which will be made available directly in the network interface).

3.3.4 Client allocation and releasing

As previously explained, a user wanting to use the QMI protocol needs to allocate a Client ID for each QMI
service to be used. In the case of the GobiNet driver, QMI client allocation and releasing is done by the kernel
driver itself, and follows this sequence of events:

13Mobile Equipment Identifier

5



1. The user opens the /dev/qcqmiX character device.

2. The user runs a driver-defined ioctl command on the open device to request a new Client ID for a given
service.

3. The kernel driver sends a CTL Client Allocation request to the modem, which replies with a newly allo-
cated unique ID for the service requested.

4. The kernel returns the Client ID as the result code of the ioctl command, although the user can choose not
to store it. From the user point of view, the returned value is just an indication of whether the allocation
succeeded or failed. Once a Client ID has been allocated for an open /dev/qcqmiX character device, only
the specific service that was requested can be used in this instance.

5. The user can now send QMI Requests for the requested service, and receive QMI Responses and Indications.
Given that the Client ID and service values are also maintained in the driver, and that the open instance
is exclusive for the Client ID and service pair, the user doesn’t really need to fill in those values when
creating a QMI Request, the driver will take care of that before sending the actual fully valid message to
the modem.

6. When no longer needed, the user closes the character device.

7. The kernel will then perform a CTL Client Release itself, releasing the previously allocated Client ID.

This logic to manage multiple concurrent clients forces a process which requires multiple services to open
the /dev/qcqmiX character device multiple times, one for each needed service. But of course, it also allows
multiple processes to do the same operations at the same time.

Another side effect of managing the Client ID within the kernel driver is that if a process ends unexpectedly,
the kernel can still release the allocated Client IDs, skipping the problem of leaving ’leaked’ unreleased ones.
All Gobi devices have a limit of client IDs that can be allocated simultaneously, so running out of these is a
serious issue14.

3.4 qmi wwan

Since Linux 3.4, the qmi wwan driver has been available in the upstream Linux releases. Being a driver main-
tained within the upstream tree means that none of the problems exposed for GobiNet are applicable, so:

• Users will get the driver already available for the exact kernel they are using.

• Most distributions already enable the qmi wwan driver in their default builds.

• The Linux tree contains always the latest sources for the latest kernel. There are no conditional code
segments with path ways for separate versions of older kernels - which tends to add complexity and a
maintenance burden. This keeps the code leaner and cleaner generally speaking.

• The qmi wwan driver supports multiple QMI capable devices, regardless of which manufacturer pro-
duced them. The driver takes care of detecting the USB layout and gathering the correct endpoints from
the correct interfaces. Therefore, there is no need for vendor-maintained versions of the driver.

Needless to say that the qmi wwan driver gets updated with new supported devices soon after being released.
Usually users with new modems will report the new VID/PIDs to use, or even manufacturers will notify the
Linux kernel community about the new devices before even being sold to the public.

3.4.1 Architecture

The qmi wwan is very similar to the GobiNet driver from an architectural point of view (see Figure 2), which
is obvious as the task of both drivers is to provide both a control and data interface in userspace.

14Gobi3000 devices, though, have the ability to reset and release all Client IDs via a CTL Sync command.

6



Figure 2: qmi wwan in the Linux kernel

QMI over USB basically uses CDC-WDM messages for the transport, and since the kernel already has code for
that, the qmi wwan driver fully relies on the generic cdc-wdm driver to manage the CONTROL and INTERRUPT
endpoints.

This is possible because, as explained earlier, the USB communication is done using SendEncapsulatedCommand
and GetEncapsulatedResponse requests as defined by the CDC USB class. The cdc-wdm driver supports the
WMC Device Management functionality of cell phones compliant to the CDC WMC specification15. The result
of using the cdc-wdm as a subdriver in qmi wwan is that a new /dev/cdc-wdmX character device is exposed
for user-space use, which allows exchanging QMI messages.

As with the GobiNet case, qmi wwan also exposes a network interface, named as wwanX because the driver
gets explicitly registered with the FLAG WWAN flag.

3.4.2 The CTL service

The qmi wwan driver knows nothing about the existence of a CTL service. It doesn’t even know that QMI is
the protocol being used in the messages transferred between user-space and the modem. But leaving all the
hard work to user-space doesn’t come without any cost. In particular, relaying to user-space the management
of the actions performed by the CTL service means that only one single process will be able to successfully use
the /dev/cdc-wdmX character device16.

3.4.3 Device initialization

The qmi wwan driver will not do any device initialization before exposing the new character and network
devices in user-space. In particular, a user-space process wanting to use the QMI port will need to explicitly
perform checks to see whether the device is ready to be used. Also, no connection statistics will be automati-
cally gathered from the device.

3.4.4 Client allocation and releasing

Following the simplicity required by the driver, and given that the driver knows nothing about the QMI pro-
tocol itself, there is no built-in mechanism to handle QMI service client allocations. Every user-space process

15USB CDC subclass for Wireless Mobile Communication devices
16To handle this issue, the libqmi implementation in user-space introduces a ’qmi-proxy’ daemon, which is the only one accessing the

QMI port.

7



wanting to use QMI, will need to handle the allocation and releasing of Client IDs using the CTL service.

Leaving the Client ID releasing task to user-space also makes it impossible to make sure that all Client IDs are
released when a process ends. A well implemented program using the QMI protocol should try to perform
the Client ID releases before exiting, but it is assumed that unexpected terminations of the running process will
end up leaving ’leaked’ Client IDs which are never released.

This limitation, though, provides itself a very useful feature which was not possible before with the GobiNet
driver. The fact that a program can choose whether or not to release a Client ID when exiting means that it
can also choose to reuse a Client ID that was maybe allocated in a previous run of the same program. From
a practical point of view, the fact that the kernel doesn’t automatically release the clients when the process
exits allows users to use the QMI protocol from within scripts or the command line, as there is no need to
allocate or release a client in each run of the script or command line program17. For most operations that can
be performed through QMI, allocating/releasing a new client for each operation is a possibility, but there are
some very specific use cases (e.g. WDS Start Network to setup a network connection) which require the Client
ID to be kept registered all the time (or the connection will be dropped).

It is worth noting again that avoiding complex operations like these in the kernel driver is by no means a
limitation of the driver; instead, the driver is kept as simple as possible and therefore much more robust. A
simple driver is also much more flexible, as user-space processes can process all the logic of the protocol, not
just parts of it.

17Which is exactly what libqmi’s qmicli and qmi-network tools allow to do.

8



Figure 3: GobiAPI in user-space

4 User space

It should be obvious by now that while using the control character device exposed by the GobiNet driver is
quite straightforward for user-space processes, using the one exposed by qmi wwan is a much more complex
task. Still, there are already free and open source projects out there that make it equally easy - if not easier - to
use the qmi wwan driver.

This section shows some of the currently available software implementations using the GobiNet and
qmi wwan kernel drivers.

4.1 GobiAPI using GobiNet

Along with the GobiNet driver, Qualcomm also implemented and published the GobiAPI library (see Fig-
ure 3). This library, developed in C++, provides a high level access to the features of a Gobi module, completely
hiding to the user of the library how the communication with the actual USB device is done. This of course
includes the ioctls required to allocate Client IDs, as well as the logic to asynchronously receive QMI messages
from the device (using multiple threads).

In addition to the generic code to communicate with the control character device, this library also exports
methods to both parse received Responses and Indications as well as to create new Requests. These methods are
also be very heavily based on a set of structures that map to the possible Type-Length-Value fields.

This library was designed to work exclusively with the GobiNet driver, and is also maintained in the CodeAu-
rora18 project.

4.1.1 Device initialization

The GobiAPI fully relies on the GobiNet kernel driver to make sure that a QMI device is fully initialized before
being used. The kernel will only expose the /dev/qcqmiX character device for fully initialized devices.

18https://www.codeaurora.org

9

https://www.codeaurora.org


4.1.2 Client allocation and releasing

As explained in the previous sections, the user-space process doesn’t need to manage the Client allocation and
releasing logic itself. The GobiAPI will just perform an ioctl to request a Client ID to be allocated when it opens
the port, and will not even store this value anywhere (as GobiNet in the kernel does it). A program using the
GobiAPI will just need to make sure that for each QMI service it wants to use it opens a new file descriptor
from the QMI control port.

4.1.3 Client multiplexing

Given that multiple concurrent access to the port is already provided by the GobiNet driver in the kernel, the
GobiAPI library doesn’t need to do anything special to make sure that the QMI commands sent by one process
don’t collide with the ones from another process.

4.2 libqmi using qmi wwan

libqmi19 is a free and open source library developed by free software contributors, and managed in the
freedesktop.org20 public repositories. Unlike the GobiAPI implementation, libqmi exposes a code source
repository with the latest fixes available, which makes it perfect to be able to get the most recent improve-
ments and fixes.

Most Linux-based distributions already include packages for libqmi, and it is also used by ModemManager21,
a mobile connection manager widely used along with NetworkManager22.

This C library relies on the GLib23, GObject24 and GIO25 libraries to provide a very high level interface to
interact with QMI modems when the qmi wwan kernel driver is being used. The generic API26 exported by the
library is a bit different from the one exported by GobiAPI, as this library not only handles the actual creation
and parsing of QMI messages, but also the full CTL service, including the device initialization sequence and
the whole Client ID allocation and releasing logic (see Figure 4).

4.2.1 Device initialization

A program wanting to use the /dev/cdc-wdmX character device for QMI control will be able to specify that
a ’version check’ is to be run during the opening sequence of the device. This check will issue a periodic
transmission of a CTL Version Info request until the modem replies with a correct response, so it is equivalent
to the one done by the GobiNet driver when it detects a new modem, but triggered in user-space instead of in
the kernel. Being optional, the program can decide to fully skip doing it if it knows that the device is already
initialized.

The steps that libqmi will perform while opening the QMI control port are specified in a bitmask of flags, and
these also may include configuring the format of network packets to be transferred through the data network
interface.

4.2.2 Client allocation and releasing

Once a QMI control device is open in a program using libqmi, it is then possible to request the allocation and
releasing of new QMI clients (and therefore the Client IDs). This is achieved using the CTL Client Allocation and

19http://www.freedesktop.org/wiki/Software/libqmi
20http://www.freedesktop.org
21http://www.freedesktop.org/wiki/Software/ModemManager/
22https://projects.gnome.org/NetworkManager
23https://developer.gnome.org/glib
24https://developer.gnome.org/gobject
25https://developer.gnome.org/gio
26http://www.freedesktop.org/software/libqmi/libqmi-glib/latest

10

http://www.freedesktop.org/wiki/Software/libqmi
http://www.freedesktop.org
http://www.freedesktop.org/wiki/Software/ModemManager/
https://projects.gnome.org/NetworkManager
https://developer.gnome.org/glib
https://developer.gnome.org/gobject
https://developer.gnome.org/gio
http://www.freedesktop.org/software/libqmi/libqmi-glib/latest


Figure 4: libqmi in user-space

CTL Client Release commands issued by the internal libqmi stack through the open character device. Note that
as opposed to the GobiAPI behaviour, libqmi can handle multiple QMI clients for different services over the
same open file descriptor.

libqmi can also benefit from the fact that the qmi wwan driver doesn’t automatically release Client IDs when
the file descriptor gets closed. A set of flags when requesting to allocate or release a QMI client allow the
program to re-use Client IDs that may have been left unreleased previously. The libqmi project offers the
following tools:

• qmicli: libqmi comes with a handy command line interface tool which allows sending independent
requests to the QMI device, also waiting for the reply of each request. A default run with qmicli will
involve allocating and releasing a new QMI client for the service for which the action applies; but there
is also the possibility to tell qmicli to re-use a specific Client ID and also to leave the Client ID unreleased
when exiting.

• qmi-network: libqmi also comes with a bash script which internally uses qmicli. This script can setup
a connection to the network using the QMI port from the commandline, and makes sure that the QMI
client for the WDS service (the one providing the connection operations) is never released during the
connection.

4.2.3 Client multiplexing

libqmi has an special Proxy flag that may be used when opening a device. If this flag is used, the process will
spawn a child process running a ’qmi-proxy’ instance. This proxy process will setup an abstract Linux socket
where it will listen to QMI messages from other processes. If all the programs which want to use a QMI port in
the system use this same flag when respectively opening the device, they will all end up sharing a single qmi-
proxy process which takes care of synchronizing the access to the /dev/cdc-wdmX character device. From
another point of view, this qmi-proxy will be the only process really talking to the port.

So, even if the qmi wwan driver doesn’t allow multiple processes to use a single /dev/cdc-wdmX device (as

11



the GobiNet driver does), the multiplexing of different Clients from different processes can still be performed
effectively in user-space.

4.3 Other user-space implementations using qmi wwan

GobiAPI and libqmi are both general-purpose libraries making it easier to access the QMI port by other ap-
plications. But there are a couple of additional projects that also hold their own user-space implementations
to access the port. It should be noted that none of the remaining implementations allow sharing access to the
QMI port; i.e. once any of these opens the port to be used, no other application will be able to do so. This is
of course a fully valid approach in e.g. embedded systems in which the Gobi modem may be used only for
connection purposes.

• oFono: The oFono27 telephony subsystem implements support for QMI communications with the
qmi wwan driver. It doesn’t use any helper library to setup the communication with the modem, and
handles the creation and parsing of the QMI messages itself.

• uqmi: The uqmi project28, maintained by the OpenWRT29 developers, re-uses the QMI message database
implemented in libqmi, but generates code more suitable for embedded devices (e.g. not depending on
GLib). Unlike libqmi, though, this project just creates a command line interface program with the most
common commands to be run with the modem.

27https://ofono.org
28http://nbd.name/gitweb.cgi?p=uqmi.git
29https://openwrt.org

12

https://ofono.org
http://nbd.name/gitweb.cgi?p=uqmi.git
https://openwrt.org


5 Resources

• GobiNet and GobiAPI

– https://www.codeaurora.org/projects/all-active-projects/gobi-project

– https://www.codeaurora.org/forums/gobi-mobile

– https://www.codeaurora.org/patches/quic/gobi

• qmi wwan

– https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/drivers/net/usb/qmi wwan.c

• libqmi

– http://www.freedesktop.org/wiki/Software/libqmi

– http://cgit.freedesktop.org/libqmi

– http://lists.freedesktop.org/archives/libqmi-devel

– http://sigquit.wordpress.com/2012/08/20/an-introduction-to-libqmi

– http://sigquit.wordpress.com/2013/09/13/sharing-a-qmi-port-between-processes

13

https://www.codeaurora.org/projects/all-active-projects/gobi-project
https://www.codeaurora.org/forums/gobi-mobile
https://www.codeaurora.org/patches/quic/gobi
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/drivers/net/usb/qmi_wwan.c
http://www.freedesktop.org/wiki/Software/libqmi
http://cgit.freedesktop.org/libqmi
http://lists.freedesktop.org/archives/libqmi-devel
http://sigquit.wordpress.com/2012/08/20/an-introduction-to-libqmi
http://sigquit.wordpress.com/2013/09/13/sharing-a-qmi-port-between-processes

	Introduction
	Gobi and QMI
	Gobi modules
	The QMI protocol

	Kernel space
	Gobi as a USB device
	Non-USB QMI devices
	GobiNet
	Architecture
	The CTL service
	Device initialization
	Client allocation and releasing

	qmi_wwan
	Architecture
	The CTL service
	Device initialization
	Client allocation and releasing


	User space
	GobiAPI using GobiNet
	Device initialization
	Client allocation and releasing
	Client multiplexing

	libqmi using qmi_wwan
	Device initialization
	Client allocation and releasing
	Client multiplexing

	Other user-space implementations using qmi_wwan

	Resources

