
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

Table	of	Contents
Introduction

Libraries

Station	Class

Station	Examples

Soft	Access	Point	Class

Soft	Access	Point	Examples

Scan	Class

Scan	Examples

Client	Class

Client	Examples

Client	Secure	Class

Client	Secure	Examples

Server	Class

Server	Examples

UDP	Class

UDP	Examples

Generic	Class

Generic	Examples

1

ESP8266	is	all	about	Wi-Fi.	If	you	are	eager	to	connect	your	new	ESP8266	module	to	Wi-Fi
network	to	start	sending	and	receiving	data,	this	is	a	good	place	to	start.	If	you	are	looking
for	more	in	depth	details	of	how	to	program	specific	Wi-Fi	networking	functionality,	you	are
also	in	the	right	place.

Table	of	Contents
Introduction

Quick	Start
Who	is	Who

Class	Description
Station
Soft	Access	Point
Scan
Client
Client	Secure
Server
UDP
Generic

Diagnostics
Check	Return	Codes
Use	printDiag
Enable	Wi-Fi	Diagnostic
Enable	Debugging	in	IDE

What's	Inside?

Introduction
The	Wi-Fi	library	for	ESP8266	has	been	developed	basing	on	ESP8266	SDK,	using	naming
convention	and	overall	functionality	philosophy	of	Arduino	WiFi	library.	Over	time	the	wealth
Wi-Fi	features	ported	from	ESP9266	SDK	to	esp8266	/	Adruino	outgrow	Arduino	WiFi	library
and	it	became	apparent	that	we	need	to	provide	separate	documentation	on	what	is	new
and	extra.

This	documentation	will	walk	you	through	several	classes,	methods	and	properties	of
ESP8266WiFi	library.	If	you	are	new	to	C++	and	Arduino,	don't	worry.	We	will	start	from
general	concepts	and	then	move	to	detailed	description	of	members	of	each	particular	class
including	usage	examples.

Introduction

2

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
http://bbs.espressif.com/viewtopic.php?f=51&t=1023
https://www.arduino.cc/en/Reference/WiFi
https://github.com/esp8266/Arduino
https://www.arduino.cc/en/Reference/WiFi
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi

The	scope	of	functionality	offered	by	ESP8266WiFi	library	is	quite	extensive	and	therefore
this	description	has	been	broken	up	into	separate	documents	marked	with	:arrow_right:.

Quick	Start

Hopefully	you	are	already	familiar	how	to	load	Blink.ino	sketch	to	ESP8266	module	and	get
the	LED	blinking.	If	not,	please	check	this	tutorial	by	Adafruit	or	another	great	tutorial
developed	by	Sparkfun.

To	hook	up	ESP	module	to	Wi-Fi	(like	hooking	up	a	mobile	phone	to	a	hot	spot),	you	need
just	couple	of	lines	of	code:

#include	<ESP8266WiFi.h>

void	setup()

{

		Serial.begin(115200);

		Serial.println();

		WiFi.begin("network-name",	"pass-to-network");

		Serial.print("Connecting");

		while	(WiFi.status()	!=	WL_CONNECTED)

		{

				delay(500);

				Serial.print(".");

		}

		Serial.println();

		Serial.print("Connected,	IP	address:	");

		Serial.println(WiFi.localIP());

}

void	loop()	{}

In	the	line		WiFi.begin("network-name",	"pass-to-network")		replace		network-name		and		pass-
to-network		with	name	and	password	to	the	Wi-Fi	network	you	like	to	connect.	Then	upload
this	sketch	to	ESP	module	and	open	serial	monitor.	You	should	see	something	like:

Introduction

3

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://github.com/esp8266/Arduino/blob/master/libraries/esp8266/examples/Blink/Blink.ino
https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/using-arduino-ide
https://learn.sparkfun.com/tutorials/esp8266-thing-hookup-guide/introduction

How	does	it	work?	In	the	first	line	of	sketch		#include	<ESP8266WiFi.h>		we	are	including
ESP8266WiFi	library.	This	library	provides	ESP8266	specific	Wi-Fi	routines	we	are	calling	to
connect	to	network.

Actual	connection	to	Wi-Fi	is	initialized	by	calling:

WiFi.begin("network-name",	"pass-to-network");

Connection	process	can	take	couple	of	seconds	and	we	are	checking	for	this	to	complete	in
the	following	loop:

		while	(WiFi.status()	!=	WL_CONNECTED)

		{

				delay(500);

				Serial.print(".");

		}

The		while()		loop	will	keep	looping	while		WiFi.status()		is	other	than		WL_CONNECTED	.	The
loop	will	exit	only	if	the	status	changes	to		WL_CONNECTED	.

The	last	line	will	then	print	out	IP	address	assigned	to	ESP	module	by	DHCP:

Serial.println(WiFi.localIP());

If	you	don't	see	the	last	line	but	just	more	and	more	dots		,	then	likely	name	or
password	to	the	Wi-Fi	network	in	sketch	is	entered	incorrectly.	Verify	name	and	password	by
connecting	from	scratch	to	this	Wi-Fi	a	PC	or	a	mobile	phone.

Introduction

4

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
http://whatismyipaddress.com/dhcp

Note:	if	connection	is	established,	and	then	lost	for	some	reason,	ESP	will	automatically
reconnect	to	last	used	access	point	once	it	is	again	back	on-line.	This	will	be	done
automatically	by	Wi-Fi	library,	without	any	user	intervention.

That's	all	you	need	to	connect	ESP8266	to	Wi-Fi.	In	the	following	chapters	we	will	explain
what	cool	things	can	be	done	by	ESP	once	connected.

Who	is	Who

Devices	that	connect	to	Wi-Fi	network	are	called	stations	(STA).	Connection	to	Wi-Fi	is
provided	by	an	access	point	(AP),	that	acts	as	a	hub	for	one	or	more	stations.	The	access
point	on	the	other	end	is	connected	to	a	wired	network.	An	access	point	is	usually	integrated
with	a	router	to	provide	access	from	Wi-Fi	network	to	the	internet.	Each	access	point	is
recognized	by	a	SSID	(Service	Set	IDentifier),	that	essentially	is	the	name	of	network	you
select	when	connecting	a	device	(station)	to	the	Wi-Fi.

ESP8266	module	can	operate	as	a	station,	so	we	can	connect	it	to	the	Wi-Fi	network.	It	can
also	operate	as	a	soft	access	point	(soft-AP),	to	establish	its	own	Wi-Fi	network.	Therefore
we	can	connect	other	stations	to	such	ESP	module.	ESP8266	is	also	able	to	operate	both	in
station	and	soft	access	point	mode.	This	provides	possibility	of	building	e.g.	mesh	networks.

The	ESP8266WiFi	library	provides	wide	collection	of	C++	methods)	(functions)	and
properties)	to	configure	and	operate	an	ESP8266	module	in	station	and	/	or	soft	access
point	mode.	They	are	described	in	the	following	chapters.

Class	Description

Introduction

5

https://en.wikipedia.org/wiki/Mesh_networking
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://en.wikipedia.org/wiki/Method_(computer_programming
https://en.wikipedia.org/wiki/Property_(programming

The	ESP8266WiFi	library	is	broken	up	into	several	classes.	In	most	of	cases,	when	writing
the	code,	user	is	not	concerned	with	this	classification.	We	are	using	it	to	break	up
description	of	this	library	into	more	manageable	pieces.

Chapters	below	describe	all	function	calls	(methods)	and	properties)	in	C++	terms)	listed	in
particular	classes	of	ESP8266WiFi.	Description	is	illustrated	with	application	examples	and
code	snippets	to	show	how	to	use	functions	in	practice.	Most	of	this	information	is	broken	up
into	separate	documents.	Please	follow	:arrow_right:	to	access	them.

Station

Station	(STA)	mode	is	used	to	get	ESP	module	connected	to	a	Wi-Fi	network	established	by
an	access	point.

Station	class	has	several	features	to	facilitate	management	of	Wi-Fi	connection.	In	case	the
connection	is	lost,	ESP8266	will	automatically	reconnect	to	the	last	used	access	point,	once
it	is	again	available.	The	same	happens	on	module	reboot.	This	is	possible	since	ESP	is
saving	credentials	to	last	used	access	point	in	flash	(non-volatile)	memory.	Using	the	saved
data	ESP	will	also	reconnect	if	sketch	has	been	changed	but	code	does	not	alter	the	Wi-Fi
mode	or	credentials.

Introduction

6

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://en.wikipedia.org/wiki/Method_(computer_programming
https://en.wikipedia.org/wiki/Property_(programming
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi

Station	Class	documentation	:arrow_right:	:	begin	|	config	|	reconnect	|	disconnect	|
isConnected	|	setAutoConnect	|	getAutoConnect	|	setAutoReconnect	|
waitForConnectResult	|	macAddress	|	localIP	|	subnetMask	|	gatewayIP	|	dnsIP	|	hostname	|
status	|	SSID	|	psk	|	BSSID	|	RSSI	|	WPS	|	Smart	Config

Check	out	separate	section	with	examples	:arrow_right:

Soft	Access	Point

An	access	point	(AP)	is	a	device	that	provides	access	to	Wi-Fi	network	to	other	devices
(stations)	and	connects	them	further	to	a	wired	network.	ESP8266	can	provide	similar
functionality	except	it	does	not	have	interface	to	a	wired	network.	Such	mode	of	operation	is
called	soft	access	point	(soft-AP).	The	maximum	number	of	stations	connected	to	the	soft-
AP	is	five.

The	soft-AP	mode	is	often	used	and	an	intermediate	step	before	connecting	ESP	to	a	Wi-Fi
in	a	station	mode.	This	is	when	SSID	and	password	to	such	network	is	not	known	upfront.
ESP	first	boots	in	soft-AP	mode,	so	we	can	connect	to	it	using	a	laptop	or	a	mobile	phone.
Then	we	are	able	to	provide	credentials	to	the	target	network.	Once	done	ESP	is	switched	to
the	station	mode	and	can	connect	to	the	target	Wi-Fi.

Another	handy	application	of	soft-AP	mode	is	to	set	up	mesh	networks.	ESP	can	operate	in
both	soft-AP	and	Station	mode	so	it	can	act	as	a	node	of	a	mesh	network.

Soft	Access	Point	Class	documentation	:arrow_right:	:	softAP	|	softAPConfig	|
softAPdisconnect	|	softAPgetStationNum	|	softAPIP	|	softAPmacAddress

Check	out	separate	section	with	examples	:arrow_right:

Introduction

7

https://en.wikipedia.org/wiki/Wireless_access_point
https://en.wikipedia.org/wiki/Mesh_networking

Scan

To	connect	a	mobile	phone	to	a	hot	spot,	you	typically	open	Wi-Fi	settings	app,	list	available
networks	and	pick	the	hot	spot	you	need.	Then	enter	a	password	(or	not)	and	you	are	in.
You	can	do	the	same	with	ESP.	Functionality	of	scanning	for,	and	listing	of	available
networks	in	range	is	implemented	by	the	Scan	Class.

Scan	Class	documentation	:arrow_right:	:	scanNetworks	|	scanNetworksAsync	|
scanComplete	|	scanDelete	|	SSID	|	encryptionType	|	BSSID	|	BSSIDstr	|	channel	|	isHidden
|	getNetworkInfo

Check	out	separate	section	with	examples	:arrow_right:

Client

The	Client	class	creates	clients)	that	can	access	services	provided	by	servers)	in	order	to
send,	receive	and	process	data.

Check	out	separate	section	with	examples	:arrow_right:	/	list	of	functions	:arrow_right:

Client	Secure

The	Client	Secure	is	an	extension	of	Client	Class	where	connection	and	data	exchange	with
servers	is	done	using	a	secure	protocol.	It	supports	TLS	1.1.	The	TLS	1.2	is	not	supported.

Introduction

8

https://en.wikipedia.org/wiki/Client_(computing
https://en.wikipedia.org/wiki/Server_(computing
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.1
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.2

Secure	applications	have	additional	memory	(and	processing)	overhead	due	to	the	need	to
run	cryptography	algorithms.	The	stronger	the	certificate's	key,	the	more	overhead	is
needed.	In	practice	it	is	not	possible	to	run	more	than	a	single	secure	client	at	a	time.	The
problem	concerns	RAM	memory	we	can	not	add,	the	flash	memory	size	is	usually	not	the
issue.	If	you	like	to	learn	how	client	secure	library	has	been	developed,	access	to	what
servers	have	been	tested,	and	how	memory	limitations	have	been	overcame,	read
fascinating	issue	report	#43.

Check	out	separate	section	with	examples	:arrow_right:	/	list	of	functions	:arrow_right:

Server

The	Server	Class	creates	servers)	that	provide	functionality	to	other	programs	or	devices,
called	clients).

Introduction

9

https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/src/WiFiClientSecure.h
https://github.com/esp8266/Arduino/issues/43
https://en.wikipedia.org/wiki/Server_(computing
https://en.wikipedia.org/wiki/Client_(computing

Clients	connect	to	sever	to	send	and	receive	data	and	access	provided	functionality.

Check	out	separate	section	with	examples	:arrow_right:	/	list	of	functions	:arrow_right:

UDP

The	UDP	Class	enables	the	User	Datagram	Protocol	(UDP)	messages	to	be	sent	and
received.	The	UDP	uses	a	simple	"fire	and	forget"	transmission	model	with	no	guarantee	of
delivery,	ordering,	or	duplicate	protection.	UDP	provides	checksums	for	data	integrity,	and
port	numbers	for	addressing	different	functions	at	the	source	and	destination	of	the
datagram.

Check	out	separate	section	with	examples	:arrow_right:	/	list	of	functions	:arrow_right:

Generic

There	are	several	functions	offered	by	ESP8266's	SDK	and	not	present	in	Arduino	WiFi
library.	If	such	function	does	not	fit	into	one	of	classes	discussed	above,	it	will	likely	be	in
Generic	Class.	Among	them	is	handler	to	manage	Wi-Fi	events	like	connection,
disconnection	or	obtaining	an	IP,	Wi-Fi	mode	changes,	functions	to	manage	module	sleep
mode,	hostname	to	an	IP	address	resolution,	etc.

Check	out	separate	section	with	examples	:arrow_right:	/	list	of	functions	:arrow_right:

Diagnostics

Introduction

10

https://en.wikipedia.org/wiki/User_Datagram_Protocol
http://bbs.espressif.com/viewtopic.php?f=51&t=1023
https://www.arduino.cc/en/Reference/WiFi

There	are	several	techniques	available	to	diagnose	and	troubleshoot	issues	with	getting
connected	to	Wi-Fi	and	keeping	connection	alive.

Check	Return	Codes

Almost	each	function	described	in	chapters	above	returns	some	diagnostic	information.

Such	diagnostic	may	be	provided	as	a	simple		boolean		type		true'	or	false`	to	indicate
operation	result.	You	may	check	this	result	as	described	in	examples,	for	instance:

Serial.printf("Wi-Fi	mode	set	to	WIFI_STA	%s\n",	WiFi.mode(WIFI_STA)	?	""	:	"Failed!")

;

Some	functions	provide	more	than	just	a	binary	status	information.	A	good	example	is
	WiFi.status()	.

Serial.printf("Connection	status:	%d\n",	WiFi.status());

This	function	returns	following	codes	to	describe	what	is	going	on	with	Wi-Fi	connection:

0	:		WL_IDLE_STATUS		when	Wi-Fi	is	in	process	of	changing	between	statuses
1	:		WL_NO_SSID_AVAIL	in	case	configured	SSID	cannot	be	reached
3	:		WL_CONNECTED		after	successful	connection	is	established
4	:		WL_CONNECT_FAILED		if	password	is	incorrect
6	:		WL_DISCONNECTED		if	module	is	not	configured	in	station	mode

It	is	a	good	practice	to	display	and	check	information	returned	by	functions.	Application
development	and	troubleshooting	will	be	easier	with	that.

Use	printDiag

There	is	a	specific	function	available	to	print	out	key	Wi-Fi	diagnostic	information:

WiFi.printDiag(Serial);

A	sample	output	of	this	function	looks	as	follows:

Introduction

11

Mode:	STA+AP

PHY	mode:	N

Channel:	11

AP	id:	0

Status:	5

Auto	connect:	1

SSID	(10):	sensor-net

Passphrase	(12):	123!$#0&*esP

BSSID	set:	0

Use	this	function	to	provide	snapshot	of	Wi-Fi	status	in	these	parts	of	application	code,	that
you	suspect	may	be	failing.

Enable	Wi-Fi	Diagnostic

By	default	the	diagnostic	output	from	Wi-Fi	libraries	is	disabled	when	you	call		Serial.begin	.
To	enable	debug	output	again,	call		Serial.setDebugOutput(true)	.	To	redirect	debug	output
to		Serial1		instead,	call		Serial1.setDebugOutput(true)	.	For	additional	details	regarding
diagnostics	using	serial	ports	please	refer	to	documentation.

Below	is	an	example	of	output	for	sample	sketch	discussed	in	Quick	Start	above	with
	Serial.setDebugOutput(true)	:

Connectingscandone

state:	0	->	2	(b0)

state:	2	->	3	(0)

state:	3	->	5	(10)

add	0

aid	1

cnt	

connected	with	sensor-net,	channel	6

dhcp	client	start...

chg_B1:-40

...ip:192.168.1.10,mask:255.255.255.0,gw:192.168.1.9

.

Connected,	IP	address:	192.168.1.10

The	same	sketch	without		Serial.setDebugOutput(true)		will	print	out	only	the	following:

Connecting....

Connected,	IP	address:	192.168.1.10

Enable	Debugging	in	IDE

Introduction

12

https://github.com/esp8266/Arduino/blob/master/doc/reference.md

Arduino	IDE	provides	convenient	method	to	enable	debugging	for	specific	libraries.

What's	Inside?
If	you	like	to	analyze	in	detail	what	is	inside	of	the	ESP8266WiFi	library,	go	directly	to	the
ESP8266WiFi	folder	of	esp8266	/	Arduino	repository	on	the	GitHub.

To	make	the	analysis	easier,	rather	than	looking	into	individual	header	or	source	files,	use
one	of	free	tools	to	automatically	generate	documentation.	The	class	index	in	chapter	Class
Description	above	has	been	prepared	in	no	time	using	great	Doxygen,	that	is	the	de	facto
standard	tool	for	generating	documentation	from	annotated	C++	sources.

The	tool	crawls	through	all	header	and	source	files	collecting	information	from	formatted
comment	blocks.	If	developer	of	particular	class	annotated	the	code,	you	will	see	it	like	in
examples	below.

Introduction

13

https://github.com/esp8266/Arduino/blob/master/doc/Troubleshooting/debugging.md
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi/src
http://www.stack.nl/~dimitri/doxygen/

If	code	is	not	annotated,	you	will	still	see	the	function	prototype	including	types	of
arguments,	and	can	use	provided	links	to	jump	straight	to	the	source	code	to	check	it	out	on
your	own.	Doxygen	provides	really	excellent	navigation	between	members	of	library.

Several	classes	of	ESP8266WiFi	are	not	annotated.	When	preparing	this	document,
Doxygen	has	been	tremendous	help	to	quickly	navigate	through	almost	30	files	that	make
this	library.

Introduction

14

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
http://www.stack.nl/~dimitri/doxygen/

Table	of	Contents
WiFi(ESP8266WiFi	library)
Ticker
EEPROM
I2C	(Wire	library)
SPI
SoftwareSerial
ESP-specific	APIs
mDNS	and	DNS-SD	responder	(ESP8266mDNS	library)
SSDP	responder	(ESP8266SSDP)
DNS	server	(DNSServer	library)
Servo
Other	libraries	(not	included	with	the	IDE)

WiFi(ESP8266WiFi	library)
The	Wi-Fi	library	for	ESP8266	has	been	developed	basing	on	ESP8266	SDK,	using	naming
convention	and	overall	functionality	philosophy	of	Arduino	WiFi	library.	Over	time	the	wealth
Wi-Fi	features	ported	from	ESP9266	SDK	to	esp8266	/	Adruino	outgrow	Arduino	WiFi	library
and	it	became	apparent	that	we	need	to	provide	separate	documentation	on	what	is	new
and	extra.

ESP8266WiFi	library	documentation	:	Quick	Start	|	Who	is	Who	|	Station	|	Soft	Access	Point
|	Scan	|	Client	|	Client	Secure	|	Server	|	UDP	|	Generic	|	Diagnostics

Ticker
Library	for	calling	functions	repeatedly	with	a	certain	period.	Two	examples	included.

It	is	currently	not	recommended	to	do	blocking	IO	operations	(network,	serial,	file)	from
Ticker	callback	functions.	Instead,	set	a	flag	inside	the	ticker	callback	and	check	for	that	flag
inside	the	loop	function.

Here	is	library	to	simplificate		Ticker		usage	and	avoid	WDT	reset:	TickerScheduler

EEPROM

Libraries

15

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
http://bbs.espressif.com/viewtopic.php?f=51&t=1023
https://www.arduino.cc/en/Reference/WiFi
https://github.com/esp8266/Arduino
https://www.arduino.cc/en/Reference/WiFi
https://github.com/Toshik/TickerScheduler

This	is	a	bit	different	from	standard	EEPROM	class.	You	need	to	call		EEPROM.begin(size)	
before	you	start	reading	or	writing,	size	being	the	number	of	bytes	you	want	to	use.	Size	can
be	anywhere	between	4	and	4096	bytes.

	EEPROM.write		does	not	write	to	flash	immediately,	instead	you	must	call		EEPROM.commit()	
whenever	you	wish	to	save	changes	to	flash.		EEPROM.end()		will	also	commit,	and	will
release	the	RAM	copy	of	EEPROM	contents.

EEPROM	library	uses	one	sector	of	flash	located	just	after	the	SPIFFS.

Three	examples	included.

I2C	(Wire	library)
Wire	library	currently	supports	master	mode	up	to	approximately	450KHz.	Before	using	I2C,
pins	for	SDA	and	SCL	need	to	be	set	by	calling		Wire.begin(int	sda,	int	scl)	,	i.e.
	Wire.begin(0,	2)		on	ESP-01,	else	they	default	to	pins	4(SDA)	and	5(SCL).

SPI
SPI	library	supports	the	entire	Arduino	SPI	API	including	transactions,	including	setting
phase	(CPHA).	Setting	the	Clock	polarity	(CPOL)	is	not	supported,	yet	(SPI_MODE2	and
SPI_MODE3	not	working).

SoftwareSerial
An	ESP8266	port	of	SoftwareSerial	library	done	by	Peter	Lerup	(@plerup)	supports	baud
rate	up	to	115200	and	multiples	SoftwareSerial	instances.	See
https://github.com/plerup/espsoftwareserial	if	you	want	to	suggest	an	improvement	or	open
an	issue	related	to	SoftwareSerial.

ESP-specific	APIs
APIs	related	to	deep	sleep	and	watchdog	timer	are	available	in	the		ESP		object,	only
available	in	Alpha	version.

	ESP.deepSleep(microseconds,	mode)		will	put	the	chip	into	deep	sleep.		mode		is	one	of
	WAKE_RF_DEFAULT	,		WAKE_RFCAL	,		WAKE_NO_RFCAL	,		WAKE_RF_DISABLED	.	(GPIO16	needs	to	be
tied	to	RST	to	wake	from	deepSleep.)

Libraries

16

https://github.com/plerup/espsoftwareserial

	ESP.rtcUserMemoryWrite(offset,	&data,	sizeof(data))		and		ESP.rtcUserMemoryRead(offset,
&data,	sizeof(data))		allow	data	to	be	stored	in	and	retrieved	from	the	RTC	user	memory	of
the	chip	respectively.	Total	size	of	RTC	user	memory	is	512	bytes,	so	offset	+	sizeof(data)
shouldn't	exceed	512.	Data	should	be	4-byte	aligned.	The	stored	data	can	be	retained
between	deep	sleep	cycles.	However,	the	data	might	be	lost	after	power	cycling	the	chip.

	ESP.restart()		restarts	the	CPU.

	ESP.getResetReason()		returns	String	containing	the	last	reset	resaon	in	human	readable
format.

	ESP.getFreeHeap()		returns	the	free	heap	size.

	ESP.getChipId()		returns	the	ESP8266	chip	ID	as	a	32-bit	integer.

Several	APIs	may	be	used	to	get	flash	chip	info:

	ESP.getFlashChipId()		returns	the	flash	chip	ID	as	a	32-bit	integer.

	ESP.getFlashChipSize()		returns	the	flash	chip	size,	in	bytes,	as	seen	by	the	SDK	(may	be
less	than	actual	size).

	ESP.getFlashChipRealSize()		returns	the	real	chip	size,	in	bytes,	based	on	the	flash	chip	ID.

	ESP.getFlashChipSpeed(void)		returns	the	flash	chip	frequency,	in	Hz.

	ESP.getCycleCount()		returns	the	cpu	instruction	cycle	count	since	start	as	an	unsigned	32-
bit.	This	is	useful	for	accurate	timing	of	very	short	actions	like	bit	banging.

	ESP.getVcc()		may	be	used	to	measure	supply	voltage.	ESP	needs	to	reconfigure	the	ADC
at	startup	in	order	for	this	feature	to	be	available.	Add	the	following	line	to	the	top	of	your
sketch	to	use		getVcc	:

ADC_MODE(ADC_VCC);

TOUT	pin	has	to	be	disconnected	in	this	mode.

Note	that	by	default	ADC	is	configured	to	read	from	TOUT	pin	using		analogRead(A0)	,	and
	ESP.getVCC()		is	not	available.

mDNS	and	DNS-SD	responder	(ESP8266mDNS
library)
Allows	the	sketch	to	respond	to	multicast	DNS	queries	for	domain	names	like	"foo.local",
and	DNS-SD	(service	dicovery)	queries.	See	attached	example	for	details.

Libraries

17

SSDP	responder	(ESP8266SSDP)
SSDP	is	another	service	discovery	protocol,	supported	on	Windows	out	of	the	box.	See
attached	example	for	reference.

DNS	server	(DNSServer	library)
Implements	a	simple	DNS	server	that	can	be	used	in	both	STA	and	AP	modes.	The	DNS
server	currently	supports	only	one	domain	(for	all	other	domains	it	will	reply	with	NXDOMAIN
or	custom	status	code).	With	it	clients	can	open	a	web	server	running	on	ESP8266	using	a
domain	name,	not	an	IP	address.	See	attached	example	for	details.

Servo
This	library	exposes	the	ability	to	control	RC	(hobby)	servo	motors.	It	will	support	upto	24
servos	on	any	available	output	pin.	By	defualt	the	first	12	servos	will	use	Timer0	and
currently	this	will	not	interfere	with	any	other	support.	Servo	counts	above	12	will	use	Timer1
and	features	that	use	it	will	be	effected.	While	many	RC	servo	motors	will	accept	the	3.3V	IO
data	pin	from	a	ESP8266,	most	will	not	be	able	to	run	off	3.3v	and	will	require	another	power
source	that	matches	their	specifications.	Make	sure	to	connect	the	grounds	between	the
ESP8266	and	the	servo	motor	power	supply.

Other	libraries	(not	included	with	the	IDE)
Libraries	that	don't	rely	on	low-level	access	to	AVR	registers	should	work	well.	Here	are	a
few	libraries	that	were	verified	to	work:

Adafruit_ILI9341	-	Port	of	the	Adafruit	ILI9341	for	the	ESP8266
arduinoVNC	-	VNC	Client	for	Arduino
arduinoWebSockets	-	WebSocket	Server	and	Client	compatible	with	ESP8266
(RFC6455)
aREST	-	REST	API	handler	library.
Blynk	-	easy	IoT	framework	for	Makers	(check	out	the	Kickstarter	page).
DallasTemperature
DHT-sensor-library	-	Arduino	library	for	the	DHT11/DHT22	temperature	and	humidity
sensors.	Download	latest	v1.1.1	library	and	no	changes	are	necessary.	Older	versions
should	initialize	DHT	as	follows:		DHT	dht(DHTPIN,	DHTTYPE,	15)	
DimSwitch	-	Control	electronic	dimmable	ballasts	for	fluorescent	light	tubes	remotely	as

Libraries

18

https://github.com/Links2004/Adafruit_ILI9341
https://github.com/Links2004/arduinoVNC
https://github.com/Links2004/arduinoWebSockets
https://github.com/marcoschwartz/aREST
https://github.com/blynkkk/blynk-library
http://tiny.cc/blynk-kick
https://github.com/milesburton/Arduino-Temperature-Control-Library.git
https://github.com/adafruit/DHT-sensor-library
https://github.com/krzychb/DimSwitch

if	using	a	wall	switch.
Encoder	-	Arduino	library	for	rotary	encoders.	Version	1.4	supports	ESP8266.
esp8266_mdns	-	mDNS	queries	and	responses	on	esp8266.	Or	to	describe	it	another
way:	An	mDNS	Client	or	Bonjour	Client	library	for	the	esp8266.
ESPAsyncTCP	-	Asynchronous	TCP	Library	for	ESP8266	and	ESP32/31B
ESPAsyncWebServer	-	Asynchronous	Web	Server	Library	for	ESP8266	and
ESP32/31B
Homie	for	ESP8266	-	Arduino	framework	for	ESP8266	implementing	Homie,	an	MQTT
convention	for	the	IoT.
NeoPixel	-	Adafruit's	NeoPixel	library,	now	with	support	for	the	ESP8266	(use	version
1.0.2	or	higher	from	Arduino's	library	manager).
NeoPixelBus	-	Arduino	NeoPixel	library	compatible	with	ESP8266.	Use	the
"DmaDriven"	or	"UartDriven"	branches	for	ESP8266.	Includes	HSL	color	support	and
more.
PubSubClient	-	MQTT	library	by	@Imroy.
RTC	-	Arduino	Library	for	Ds1307	&	Ds3231	compatible	with	ESP8266.
Souliss,	Smart	Home	-	Framework	for	Smart	Home	based	on	Arduino,	Android	and
openHAB.
ST7735	-	Adafruit's	ST7735	library	modified	to	be	compatible	with	ESP8266.	Just	make
sure	to	modify	the	pins	in	the	examples	as	they	are	still	AVR	specific.
Task	-	Arduino	Nonpreemptive	multitasking	library.	While	similiar	to	the	included	Ticker
library	in	the	functionality	provided,	this	library	was	meant	for	cross	Arduino
compatibility.
TickerScheduler	-	Library	provides	simple	scheduler	for		Ticker		to	avoid	WDT	reset
Teleinfo	-	Generic	French	Power	Meter	library	to	read	Teleinfo	energy	monitoring	data
such	as	consuption,	contract,	power,	period,	...	This	library	is	cross	platform,	ESP8266,
Arduino,	Particle,	and	simple	C++.	French	dedicated	post	on	author's	blog	and	all
related	information	about	Teleinfo	also	available.
UTFT-ESP8266	-	UTFT	display	library	with	support	for	ESP8266.	Only	serial	interface
(SPI)	displays	are	supported	for	now	(no	8-bit	parallel	mode,	etc).	Also	includes	support
for	the	hardware	SPI	controller	of	the	ESP8266.
WiFiManager	-	WiFi	Connection	manager	with	web	captive	portal.	If	it	can't	connect,	it
starts	AP	mode	and	a	configuration	portal	so	you	can	choose	and	enter	WiFi
credentials.
OneWire	-	Library	for	Dallas/Maxim	1-Wire	Chips.
Adafruit-PCD8544-Nokia-5110-LCD-Library	-	Port	of	the	Adafruit	PCD8544	-	library	for
the	ESP8266.
PCF8574_ESP	-	A	very	simplistic	library	for	using	the	PCF8574/PCF8574A	I2C	8-pin
GPIO-expander.
Dot	Matrix	Display	Library	2	-	Freetronics	DMD	&	Generic	16	x	32	P10	style	Dot	Matrix

Libraries

19

https://github.com/PaulStoffregen/Encoder
https://github.com/mrdunk/esp8266_mdns
https://github.com/me-no-dev/ESPAsyncTCP
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/marvinroger/homie-esp8266
https://github.com/adafruit/Adafruit_NeoPixel
https://github.com/Makuna/NeoPixelBus
https://github.com/Imroy/pubsubclient
https://github.com/Makuna/Rtc
https://github.com/souliss/souliss
https://github.com/nzmichaelh/Adafruit-ST7735-Library
https://github.com/Makuna/Task
https://github.com/Toshik/TickerScheduler
https://github.com/hallard/LibTeleinfo
https://hallard.me/libteleinfo/
https://hallard.me/category/tinfo/
https://github.com/gnulabis/UTFT-ESP8266
https://github.com/tzapu/WiFiManager
https://github.com/PaulStoffregen/OneWire
https://github.com/WereCatf/Adafruit-PCD8544-Nokia-5110-LCD-library
https://github.com/WereCatf/PCF8574_ESP
https://github.com/freetronics/DMD2

Display	Library
SdFat-beta	-	SD-card	library	with	support	for	long	filenames,	software-	and	hardware-
based	SPI	and	lots	more.
FastLED	-	a	library	for	easily	&	efficiently	controlling	a	wide	variety	of	LED	chipsets,	like
the	Neopixel	(WS2812B),	DotStar,	LPD8806	and	many	more.	Includes	fading,	gradient,
color	conversion	functions.
OLED	-	a	library	for	controlling	I2C	connected	OLED	displays.	Tested	with	0.96	inch
OLED	graphics	display.
MFRC522	-	A	library	for	using	the	Mifare	RC522	RFID-tag	reader/writer.
Ping	-	lets	the	ESP8266	ping	a	remote	machine.

Libraries

20

https://github.com/greiman/SdFat-beta
https://github.com/FastLED/FastLED
https://github.com/klarsys/esp8266-OLED
https://github.com/miguelbalboa/rfid
https://github.com/dancol90/ESP8266Ping

ESP8266WiFi	Library	:back:

Station	Class
The	number	of	features	provided	by	ESP8266	in	the	station	mode	is	far	more	extensive	than
covered	in	original	Arduino	WiFi	library.	Therefore,	instead	of	supplementing	original
documentation,	we	have	decided	to	write	a	new	one	from	scratch.

Description	of	station	class	has	been	broken	down	into	four	parts.	First	discusses	methods
to	establish	connection	to	an	access	point.	Second	provides	methods	to	manage	connection
like	e.g.		reconnect		or		isConnected	.	Third	covers	properties	to	obtain	information	about
connection	like	MAC	or	IP	address.	Finally	the	fourth	section	provides	alternate	methods	to
connect	like	e.g.	Wi-Fi	Protected	Setup	(WPS).

Table	of	Contents
Start	Here

begin
config

Manage	Connection
reconnect
disconnect
isConnected
setAutoConnect
getAutoConnect
setAutoReconnect
waitForConnectResult

Configuration
macAddress
localIP
subnetMask
gatewayIP
dnsIP
hostname
status
SSID
psk
BSSID
RSSI

Station	Class

21

https://www.arduino.cc/en/Reference/WiFi

Connect	Different
WPS
Smart	Config

Points	below	provide	description	and	code	snippets	how	to	use	particular	methods.

For	more	code	samples	please	refer	to	separate	section	with	examples	:arrow_right:
dedicated	specifically	to	the	Station	Class.

Start	Here

Switching	the	module	to	Station	mode	is	done	with		begin		function.	Typical	parameters
passed	to		begin		include	SSID	and	password,	so	module	can	connect	to	specific	Access
Point.

WiFi.begin(ssid,	password)

By	default,	ESP	will	attempt	to	reconnect	to	Wi-Fi	network	whenever	it	is	disconnected.
There	is	no	need	to	handle	this	by	separate	code.	A	good	way	to	simulate	disconnection
would	be	to	reset	the	access	point.	ESP	will	report	disconnection,	and	then	try	to	reconnect
automatically.

begin

There	are	several	version	(called	function	overloads	in	C++)	of		begin		function.	One	was
presented	just	above:		WiFi.begin(ssid,	password)	.	Overloads	provide	flexibility	in	number
or	type	of	accepted	parameters.

The	simplest	overload	of		begin		is	as	follows:

WiFi.begin()

Calling	it	will	instruct	module	to	switch	to	the	station	mode	and	connect	to	the	last	used
access	point	basing	on	configuration	saved	in	flash	memory.

Below	is	the	syntax	of	another	overload	of		begin		with	the	all	possible	parameters:

WiFi.begin(ssid,	password,	channel,	bssid,	connect)

Meaning	of	parameters	is	as	follows:

	ssid		-	a	character	string	containing	the	SSID	of	Access	Point	we	would	like	to	connect

Station	Class

22

https://en.wikipedia.org/wiki/Function_overloading

to,	may	have	up	to	32	characters
	password		to	the	access	point,	a	character	string	that	should	be	minimum	8	characters
long	and	not	longer	than	64	characters
	channel		of	AP,	if	we	like	to	operate	using	specific	channel,	otherwise	this	parameter
may	be	omitted
	bssid		-	mac	address	of	AP,	this	parameter	is	also	optional
	connect		-	a		boolean		parameter	that	if	set	to		false	,	will	instruct	module	just	to	save
the	other	parameters	without	actually	establishing	connection	to	the	access	point

config

Disable	DHCP	client	(Dynamic	Host	Configuration	Protocol)	and	set	the	IP	configuration	of
station	interface	to	user	defined	arbitrary	values.	The	interface	will	be	a	static	IP
configuration	instead	of	values	provided	by	DHCP.

WiFi.config(local_ip,	gateway,	subnet,	dns1,	dns2)

Function	will	return		true		if	configuration	change	is	applied	successfully.	If	configuration	can
not	be	applied,	because	e.g.	module	is	not	in	station	or	station	+	soft	access	point	mode,
then		false		will	be	returned.

The	following	IP	configuration	may	be	provided:

	local_ip		-	enter	here	IP	address	you	would	like	to	assign	the	ESP	station's	interface
	gateway		-	should	contain	IP	address	of	gateway	(a	router)	to	access	external	networks
	subnet		-	this	is	a	mask	that	defines	the	range	of	IP	addresses	of	the	local	network
	dns1	,		dns2		-	optional	parameters	that	define	IP	addresses	of	Domain	Name	Servers
(DNS)	that	maintain	a	directory	of	domain	names	(like	e.g.	www.google.co.uk)	and
translate	them	for	us	to	IP	addresses

Example	code:

Station	Class

23

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

#include	<ESP8266WiFi.h>

const	char*	ssid	=	"********";

const	char*	password	=	"********";

IPAddress	staticIP(192,168,1,22);

IPAddress	gateway(192,168,1,9);

IPAddress	subnet(255,255,255,0);

void	setup(void)

{

		Serial.begin(115200);

		Serial.println();

		Serial.printf("Connecting	to	%s\n",	ssid);

		WiFi.begin(ssid,	password);

		WiFi.config(staticIP,	gateway,	subnet);

		while	(WiFi.status()	!=	WL_CONNECTED)

		{

				delay(500);

				Serial.print(".");

		}

		Serial.println();

		Serial.print("Connected,	IP	address:	");

		Serial.println(WiFi.localIP());

}

void	loop()	{}

Example	output:

Connecting	to	sensor-net

.

Connected,	IP	address:	192.168.1.22

Please	note	that	station	with	static	IP	configuration	usually	connects	to	the	network	faster.	In
the	above	example	it	took	about	500ms	(one	dot		.		displayed).	This	is	because	obtaining	of
IP	configuration	by	DHCP	client	takes	time	and	in	this	case	this	step	is	skipped.

Manage	Connection

reconnect

Reconnect	the	station.	This	is	done	by	disconnecting	from	the	access	point	an	then	initiating
connection	back	to	the	same	AP.

Station	Class

24

WiFi.reconnect()

Notes:

1.	 Station	should	be	already	connected	to	an	access	point.	If	this	is	not	the	case,	then
function	will	return		false		not	performing	any	action.

2.	 If		true		is	returned	it	means	that	connection	sequence	has	been	successfully	started.
User	should	still	check	for	connection	status,	waiting	until		WL_CONNECTED		is	reported:

WiFi.reconnect();

while	(WiFi.status()	!=	WL_CONNECTED)

{

		delay(500);

		Serial.print(".");

}

disconnect

Sets	currently	configured	SSID	and	password	to		null		values	and	disconnects	the	station
from	an	access	point.

WiFi.disconnect(wifioff)

The		wifioff		is	an	optional		boolean		parameter.	If	set	to		true	,	then	the	station	mode	will
be	turned	off.

isConnected

Returns		true		if	Station	is	connected	to	an	access	point	or		false		if	not.

WiFi.isConnected()

setAutoConnect

Configure	module	to	automatically	connect	on	power	on	to	the	last	used	access	point.

WiFi.setAutoConnect(autoConnect)

The		autoConnect		is	an	optional	parameter.	If	set	to		false		then	auto	connection
functionality	up	will	be	disabled.	If	omitted	or	set	to		true	,	then	auto	connection	will	be
enabled.

Station	Class

25

getAutoConnect

This	is	"companion"	function	to		setAutoConnect()	.	It	returns		true		if	module	is	configured	to
automatically	connect	to	last	used	access	point	on	power	on.

WiFi.getAutoConnect()

If	auto	connection	functionality	is	disabled,	then	function	returns		false	.

setAutoReconnect

Set	whether	module	will	attempt	to	reconnect	to	an	access	point	in	case	it	is	disconnected.

WiFi.setAutoReconnect(autoReconnect)

If	parameter		autoReconnect		is	set	to		true	,	then	module	will	try	to	reestablish	lost
connection	to	the	AP.	If	set	to		false		then	module	will	stay	disconnected.

Note:	running		setAutoReconnect(true)		when	module	is	already	disconnected	will	not	make	it
reconnect	to	the	access	point.	Instead		reconnect()		should	be	used.

waitForConnectResult

Wait	until	module	connects	to	the	access	point.	This	function	is	intended	for	module
configured	in	station	or	station	+	soft	access	point	mode.

WiFi.waitForConnectResult()

Function	returns	one	of	the	following	connection	statuses:

	WL_CONNECTED		after	successful	connection	is	established
	WL_NO_SSID_AVAIL	in	case	configured	SSID	cannot	be	reached
	WL_CONNECT_FAILED		if	password	is	incorrect
	WL_IDLE_STATUS		when	Wi-Fi	is	in	process	of	changing	between	statuses
	WL_DISCONNECTED		if	module	is	not	configured	in	station	mode

Configuration

macAddress

Get	the	MAC	address	of	the	ESP	station's	interface.

Station	Class

26

WiFi.macAddress(mac)

Function	should	be	provided	with		mac		that	is	a	pointer	to	memory	location	(an		uint8_t	
array	the	size	of	6	elements)	to	save	the	mac	address.	The	same	pointer	value	is	returned
by	the	function	itself.

Example	code:

if	(WiFi.status()	==	WL_CONNECTED)

{

		uint8_t	macAddr[6];

		WiFi.macAddress(macAddr);

		Serial.printf("Connected,	mac	address:	%02x:%02x:%02x:%02x:%02x:%02x\n",	macAddr[0],

	macAddr[1],	macAddr[2],	macAddr[3],	macAddr[4],	macAddr[5]);

}

Example	output:

Mac	address:	5C:CF:7F:08:11:17

If	you	do	not	feel	comfortable	with	pointers,	then	there	is	optional	version	of	this	function
available.	Instead	of	the	pointer,	it	returns	a	formatted		String		that	contains	the	same	mac
address.

WiFi.macAddress()

Example	code:

if	(WiFi.status()	==	WL_CONNECTED)

{

		Serial.printf("Connected,	mac	address:	%s\n",	WiFi.macAddress().c_str());

}

localIP

Function	used	to	obtain	IP	address	of	ESP	station's	interface.

WiFi.localIP()

Station	Class

27

The	type	of	returned	value	is	IPAddress.	There	is	a	couple	of	methods	available	to	display
this	type	of	data.	They	are	presented	in	examples	below	that	cover	description	of
	subnetMask	,		gatewayIP		and		dnsIP		that	return	the	IPAdress	as	well.

Example	code:

if	(WiFi.status()	==	WL_CONNECTED)

{

		Serial.print("Connected,	IP	address:	");

		Serial.println(WiFi.localIP());

}

Example	output:

Connected,	IP	address:	192.168.1.10

subnetMask

Get	the	subnet	mask	of	the	station's	interface.

WiFi.subnetMask()

Module	should	be	connected	to	the	access	point	to	obtain	the	subnet	mask.

Example	code:

Serial.print("Subnet	mask:	");

Serial.println(WiFi.subnetMask());

Example	output:

Subnet	mask:	255.255.255.0

gatewayIP

Get	the	IP	address	of	the	gateway.

WiFi.gatewayIP()

Example	code:

Station	Class

28

https://github.com/esp8266/Arduino/blob/master/cores/esp8266/IPAddress.h

Serial.printf("Gataway	IP:	%s\n",	WiFi.gatewayIP().toString().c_str());

Example	output:

Gataway	IP:	192.168.1.9

dnsIP

Get	the	IP	addresses	of	Domain	Name	Servers	(DNS).

WiFi.dnsIP(dns_no)

With	the	input	parameter		dns_no		we	can	specify	which	Domain	Name	Server's	IP	we	need.
This	parameter	is	zero	based	and	allowed	values	are	none,	0	or	1.	If	no	parameter	is
provided,	then	IP	of	DNS	#1	is	returned.

Example	code:

Serial.print("DNS	#1,	#2	IP:	");

WiFi.dnsIP().printTo(Serial);

Serial.print(",	");

WiFi.dnsIP(1).printTo(Serial);

Serial.println();

Example	output:

DNS	#1,	#2	IP:	62.179.1.60,	62.179.1.61

hostname

Get	the	DHCP	hostname	assigned	to	ESP	station.

WiFi.hostname()

Function	returns		String		type.	Default	hostname	is	in	format		ESP_24xMAC	where	24xMAC
are	the	last	24	bits	of	module's	MAC	address.

The	hostname	may	be	changed	using	the	following	function:

WiFi.hostname(aHostname)

Station	Class

29

Input	parameter		aHostname		may	be	a	type	of		char*	,		const	char*		or		String	.	Maximum
length	of	assigned	hostname	is	32	characters.	Function	returns	either		true		or		false	
depending	on	result.	For	instance,	if	the	limit	of	32	characters	is	exceeded,	function	will
return		false		without	assigning	the	new	hostname.

Example	code:

Serial.printf("Default	hostname:	%s\n",	WiFi.hostname().c_str());

WiFi.hostname("Station_Tester_02");

Serial.printf("New	hostname:	%s\n",	WiFi.hostname().c_str());

Example	output:

Default	hostname:	ESP_081117

New	hostname:	Station_Tester_02

status

Return	the	status	of	Wi-Fi	connection.

WiFi.status()

Function	returns	one	of	the	following	connection	statuses:

	WL_CONNECTED		after	successful	connection	is	established
	WL_NO_SSID_AVAIL	in	case	configured	SSID	cannot	be	reached
	WL_CONNECT_FAILED		if	password	is	incorrect
	WL_IDLE_STATUS		when	Wi-Fi	is	in	process	of	changing	between	statuses
	WL_DISCONNECTED		if	module	is	not	configured	in	station	mode

Returned	value	is	type	of		wl_status_t		defined	in	wl_definitions.h

Example	code:

Station	Class

30

https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/src/include/wl_definitions.h

#include	<ESP8266WiFi.h>

void	setup(void)

{

		Serial.begin(115200);

		Serial.printf("Connection	status:	%d\n",	WiFi.status());

		Serial.printf("Connecting	to	%s\n",	ssid);

		WiFi.begin(ssid,	password);

		Serial.printf("Connection	status:	%d\n",	WiFi.status());

		while	(WiFi.status()	!=	WL_CONNECTED)

		{

				delay(500);

				Serial.print(".");

		}

		Serial.printf("\nConnection	status:	%d\n",	WiFi.status());

		Serial.print("Connected,	IP	address:	");

		Serial.println(WiFi.localIP());

}

void	loop()	{}

Example	output:

Connection	status:	6

Connecting	to	sensor-net

Connection	status:	6

......

Connection	status:	3

Connected,	IP	address:	192.168.1.10

Particular	connection	statuses	6	and	3	may	be	looked	up	in	wl_definitions.h	as	follows:

3	-	WL_CONNECTED

6	-	WL_DISCONNECTED

Basing	on	this	example,	when	running	above	code,	module	is	initially	disconnected	from	the
network	and	returns	connection	status		6	-	WL_DISCONNECTED	.	It	is	also	disconnected
immediately	after	running		WiFi.begin(ssid,	password)	.	Then	after	about	3	seconds	(basing
on	number	of	dots	displayed	every	500ms),	it	finally	gets	connected	returning	status		3	-
WL_CONNECTED	.

SSID

Return	the	name	of	Wi-Fi	network,	formally	called	Service	Set	Identification	(SSID).

Station	Class

31

https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/src/include/wl_definitions.h
http://www.juniper.net/techpubs/en_US/network-director1.1/topics/concept/wireless-ssid-bssid-essid.html#jd0e34

WiFi.SSID()

Returned	value	is	of	the		String		type.

Example	code:

Serial.printf("SSID:	%s\n",	WiFi.SSID().c_str());

Example	output:

SSID:	sensor-net

psk

Return	current	pre	shared	key	(password)	associated	with	the	Wi-Fi	network.

WiFi.psk()

Function	returns	value	of	the		String		type.

BSSID

Return	the	mac	address	the	access	point	where	ESP	module	is	connected	to.	This	address
is	formally	called	Basic	Service	Set	Identification	(BSSID).

WiFi.BSSID()

The		BSSID()		function	returns	a	pointer	to	the	memory	location	(an		uint8_t		array	with	the
size	of	6	elements)	where	the	BSSID	is	saved.

Below	is	similar	function,	but	returning	BSSID	but	as	a		String		type.

WiFi.BSSIDstr()

Example	code:

Serial.printf("BSSID:	%s\n",	WiFi.BSSIDstr().c_str());

Example	output:

Station	Class

32

http://www.juniper.net/techpubs/en_US/network-director1.1/topics/concept/wireless-ssid-bssid-essid.html#jd0e47

BSSID:	00:1A:70:DE:C1:68

RSSI

Return	the	signal	strength	of	Wi-Fi	network,	that	is	formally	called	Received	Signal	Strength
Indication	(RSSI).

WiFi.RSSI()

Signal	strength	value	is	provided	in	dBm.	The	type	of	returned	value	is		int32_t	.

Example	code:

Serial.printf("RSSI:	%d	dBm\n",	WiFi.RSSI());

Example	output:

RSSI:	-68	dBm

Connect	Different

ESP8266	SDK	provides	alternate	methods	to	connect	ESP	station	to	an	access	point.	Out	of
them	esp8266	/	Arduino	core	implements	WPS	and	Smart	Config	as	described	in	more
details	below.

WPS

The	following		beginWPSConfig		function	allows	connecting	to	a	network	using	Wi-Fi	Protected
Setup	(WPS).	Currently	only	push-button	configuration	(WPS_TYPE_PBC		mode)	is	supported
(SDK	1.5.4).

WiFi.beginWPSConfig()

Depending	on	connection	result	function	returns	either		true		or		false		(boolean		type).

Example	code:

Station	Class

33

https://en.wikipedia.org/wiki/Received_signal_strength_indication
http://bbs.espressif.com/viewtopic.php?f=51&t=1023
https://github.com/esp8266/Arduino
https://en.wikipedia.org/wiki/Wi-Fi_Protected_Setup
http://www.wi-fi.org/knowledge-center/faq/how-does-wi-fi-protected-setup-work

#include	<ESP8266WiFi.h>

void	setup(void)

{

		Serial.begin(115200);

		Serial.println();

		Serial.printf("Wi-Fi	mode	set	to	WIFI_STA	%s\n",	WiFi.mode(WIFI_STA)	?	""	:	"Failed!"

);

		Serial.print("Begin	WPS	(press	WPS	button	on	your	router)	...	");

		Serial.println(WiFi.beginWPSConfig()	?	"Success"	:	"Failed");

		while	(WiFi.status()	!=	WL_CONNECTED)

		{

				delay(500);

				Serial.print(".");

		}

		Serial.println();

		Serial.print("Connected,	IP	address:	");

		Serial.println(WiFi.localIP());

}

void	loop()	{}

Example	output:

Wi-Fi	mode	set	to	WIFI_STA	

Begin	WPS	(press	WPS	button	on	your	router)	...	Success

.........

Connected,	IP	address:	192.168.1.102

Smart	Config

The	Smart	Config	connection	of	an	ESP	module	an	access	point	is	done	by	sniffing	for
special	packets	that	contain	SSID	and	password	of	desired	AP.	To	do	so	the	mobile	device
or	computer	should	have	functionality	of	broadcasting	of	encoded	SSID	and	password.

The	following	three	functions	are	provided	to	implement	Smart	Config.

Start	smart	configuration	mode	by	sniffing	for	special	packets	that	contain	SSID	and
password	of	desired	Access	Point.	Depending	on	result	either		true		or	`false	is	returned.

beginSmartConfig()

Station	Class

34

Query	Smart	Config	status,	to	decide	when	stop	configuration.	Function	returns	either		true	
or		false	of	boolean`	type.

smartConfigDone()

Stop	smart	config,	free	the	buffer	taken	by		beginSmartConfig()	.	Depending	on	result
function	return	either		true		or		false		of		boolean		type.

stopSmartConfig()

For	additional	details	regarding	Smart	Config	please	refer	to	ESP8266	API	User	Guide.

Station	Class

35

http://bbs.espressif.com/viewtopic.php?f=51&t=1023

ESP8266WiFi	Library	:back:

Station
Example	of	connecting	to	an	access	point	has	been	shown	in	chapter	Quick	Start.	In	case
connection	is	lost,	ESP8266	will	automatically	reconnect	to	the	last	used	access	point,	once
it	is	again	available.

Can	we	provide	more	robust	connection	to	Wi-Fi	than	that?

Table	of	Contents
Introduction
Prepare	Access	Points
Try	it	Out
Can	we	Make	it	Simpler?
Conclusion

Introduction

Following	the	example	inQuick	Start,	we	would	like	to	go	one	step	further	and	made	ESP
connect	to	next	available	access	point	if	current	connection	is	lost.	This	functionality	is
provided	with	'ESP8266WiFiMulti'	class	and	demonstrated	in	sketch	below.

Station	Examples

36

#include	<ESP8266WiFi.h>

#include	<ESP8266WiFiMulti.h>

ESP8266WiFiMulti	wifiMulti;

boolean	connectioWasAlive	=	true;

void	setup()

{

		Serial.begin(115200);

		Serial.println();

		wifiMulti.addAP("primary-network-name",	"pass-to-primary-network");

		wifiMulti.addAP("secondary-network-name",	"pass-to-secondary-network");

		wifiMulti.addAP("tertiary-network-name",	"pass-to-tertiary-network");

}

void	monitorWiFi()

{

		if	(wifiMulti.run()	!=	WL_CONNECTED)

		{

				if	(connectioWasAlive	==	true)

				{

						connectioWasAlive	=	false;

						Serial.print("Looking	for	WiFi	");

				}

				Serial.print(".");

				delay(500);

		}

		else	if	(connectioWasAlive	==	false)

		{

				connectioWasAlive	=	true;

				Serial.printf("	connected	to	%s\n",	WiFi.SSID().c_str());

		}

}

void	loop()

{

		monitorWiFi();

}

Prepare	Access	Points

To	try	this	sketch	in	action	you	need	two	(or	more)	access	points.	In	lines	below	replace
	primary-network-name		and		pass-to-primary-network		with	name	and	password	to	your
primary	network.	Do	the	same	for	secondary	network.

wifiMulti.addAP("primary-network-name",	"pass-to-primary-network");

wifiMulti.addAP("secondary-network-name",	"pass-to-secondary-network");

Station	Examples

37

You	may	add	more	networks	if	you	have	more	access	points.

wifiMulti.addAP("tertiary-network-name",	"pass-to-tertiary-network");

...

Try	it	Out

Now	upload	updated	sketch	to	ESP	module	and	open	serial	monitor.	Module	will	first	scan
for	available	networks.	Then	it	will	select	and	connect	to	the	network	with	stronger	signal.	In
case	connection	is	lost,	module	will	connect	to	next	one	available.

This	process	may	look	something	like:

Looking	for	WiFi	connected	to	sensor-net-1

Looking	for	WiFi	connected	to	sensor-net-2

Looking	for	WiFi	connected	to	sensor-net-1

In	above	example	ESP	connected	first	to		sensor-net-1	.	Then	I	have	switched		sensor-net-
1		off.	ESP	discovered	that	connection	is	lost	and	started	searching	for	another	configured
network.	That	happened	to	be		sensor-net-2		so	ESP	connected	to	it.	Then	I	have	switched
	sensor-net-1		back	on	and	shut	down		sensor-net-2	.	ESP	reconnected	automatically	to
	sensor-net-1	.

Function		monitorWiFi()		is	in	place	to	show	when	connection	is	lost	by	displaying		Looking
for	WiFi	.	Dots			are	displayed	during	process	of	searching	for	another	configured
access	point.	Then	a	message	like		connected	to	sensor-net-2		is	shown	when	connection	is
established.

Can	we	Make	it	Simpler?

Please	note	that	you	may	simplify	this	sketch	by	removing	function		monitorWiFi()		and
putting	inside		loop()		only		wifiMulti.run()	.	ESP	will	still	reconnect	between	configured
access	points	if	required.	Now	you	won't	be	able	to	see	it	on	serial	monitor	unless	you	add
	Serial.setDebugOutput(true)		as	described	in	point	Enable	Wi-Fi	Diagnostic.

Updated	sketch	for	such	scenario	will	look	as	follows:

Station	Examples

38

#include	<ESP8266WiFi.h>

#include	<ESP8266WiFiMulti.h>

ESP8266WiFiMulti	wifiMulti;

void	setup()

{

		Serial.begin(115200);

		Serial.setDebugOutput(true);

		Serial.println();

		wifiMulti.addAP("primary-network-name",	"pass-to-primary-network");

		wifiMulti.addAP("secondary-network-name",	"pass-to-secondary-network");

		wifiMulti.addAP("tertiary-network-name",	"pass-to-tertiary-network");

}

void	loop()

{

		wifiMulti.run();

}

That's	it!	This	is	really	all	the	code	you	need	to	make	ESP	automatically	reconnecting
between	available	networks.

After	uploading	sketch	and	opening	the	serial	monitor,	the	messages	will	look	as	below.

Initial	connection	to	sensor-net-1	on	power	up:

f	r0,	scandone

f	r0,	scandone

state:	0	->	2	(b0)

state:	2	->	3	(0)

state:	3	->	5	(10)

add	0

aid	1

cnt

chg_B1:-40

connected	with	sensor-net-1,	channel	1

dhcp	client	start...

ip:192.168.1.10,mask:255.255.255.0,gw:192.168.1.9

Lost	connection	to	sensor-net-1	and	establishing	connection	to	sensor-net-2:

Station	Examples

39

bcn_timout,ap_probe_send_start

ap_probe_send	over,	rest	wifi	status	to	disassoc

state:	5	->	0	(1)

rm	0

f	r-40,	scandone

f	r-40,	scandone

f	r-40,	scandone

state:	0	->	2	(b0)

state:	2	->	3	(0)

state:	3	->	5	(10)

add	0

aid	1

cnt

connected	with	sensor-net-2,	channel	11

dhcp	client	start...

ip:192.168.1.102,mask:255.255.255.0,gw:192.168.1.234

Lost	connection	to	sensor-net-2	and	establishing	connection	back	to	sensor-net-1:

bcn_timout,ap_probe_send_start

ap_probe_send	over,	rest	wifi	status	to	disassoc

state:	5	->	0	(1)

rm	0

f	r-40,	scandone

f	r-40,	scandone

f	r-40,	scandone

state:	0	->	2	(b0)

state:	2	->	3	(0)

state:	3	->	5	(10)

add	0

aid	1

cnt

connected	with	sensor-net-1,	channel	6

dhcp	client	start...

ip:192.168.1.10,mask:255.255.255.0,gw:192.168.1.9

Conclusion

I	believe	the	minimalist	sketch	with		ESP8266WiFiMulti		class	is	a	cool	example	what
ESP8266	can	do	for	us	behind	the	scenes	with	just	couple	lines	of	code.

As	shown	in	above	example,	reconnecting	between	access	points	takes	time	and	is	not
seamless.	Therefore,	in	practical	applications,	you	will	likely	need	to	monitor	connection
status	to	decide	e.g.	if	you	can	send	the	data	to	external	system	or	should	wait	until
connection	is	back.

Station	Examples

40

For	detailed	review	of	functions	provided	to	manage	station	mode	please	refer	to	the	Station
Class	:arrow_right:	documentation.

Station	Examples

41

ESP8266WiFi	Library	:back:

Soft	Access	Point	Class
Section	below	is	ESP8266	specific	as	Arduino	WiFi	library	documentation	does	not	cover
soft	access	point.	The	API	description	is	broken	down	into	three	short	chapters.	They	cover
how	to	setup	soft-AP,	manage	connection,	and	obtain	information	on	soft-AP	interface
configuration.

Table	of	Contents
Set	up	Network

softAP
softAPConfig

Manage	Network
softAPdisconnect
softAPgetStationNum

Network	Configuration
softAPIP
softAPmacAddress

Set	up	Network

This	section	describes	functions	to	set	up	and	configure	ESP8266	in	the	soft	access	point
(soft-AP)	mode.

softAP

Set	up	a	soft	access	point	to	establish	a	Wi-Fi	network.

The	simplest	version	(an	overload	in	C++	terms)	of	this	function	requires	only	one	parameter
and	is	used	to	set	up	an	open	Wi-Fi	network.

WiFi.softAP(ssid)

To	set	up	password	protected	network,	or	to	configure	additional	network	parameters,	use
the	following	overload:

WiFi.softAP(ssid,	password,	channel,	hidden)

Soft	Access	Point	Class

42

https://www.arduino.cc/en/Reference/WiFi
https://en.wikipedia.org/wiki/Function_overloading

The	first	parameter	of	this	function	is	required,	remaining	three	are	optional.

Meaning	of	all	parameters	is	as	follows:

	ssid		-	character	string	containing	network	SSID	(max.	63	characters)
	password		-	optional	character	string	with	a	password.	For	WPA2-PSK	network	it	should
be	at	least	8	character	long.	If	not	specified,	the	access	point	will	be	open	for	anybody
to	connect.
	channel		-	optional	parameter	to	set	Wi-Fi	channel,	from	1	to	13.	Default	channel	=	1.
	hidden		-	optional	parameter,	if	set	to		true		will	hide	SSID

Function	will	return		true		or		false		depending	on	result	of	setting	the	soft-AP.

Notes:

The	network	established	by	softAP	will	have	default	IP	address	of	192.168.4.1.	This
address	may	be	changed	using		softAPConfig		(see	below).
Even	though	ESP8266	can	operate	in	soft-AP	+	station	mode,	it	actually	has	only	one
hardware	channel.	Therefore	in	soft-AP	+	station	mode,	the	soft-AP	channel	will	default
to	the	number	used	by	station.	For	more	information	how	this	may	affect	operation	of
stations	connected	to	ESP8266's	soft-AP,	please	check	this	FAQ	entry	on	Espressif
forum.

softAPConfig

Configure	the	soft	access	point's	network	interface.

softAPConfig	(local_ip,	gateway,	subnet)

All	parameters	are	the	type	of		IPAddress		and	defined	as	follows:

	local_ip		-	IP	address	of	the	soft	access	point
	gateway		-	gateway	IP	address
	subnet		-	subnet	mask

Function	will	return		true		or		false		depending	on	result	of	changing	the	configuration.

Example	code:

Soft	Access	Point	Class

43

http://bbs.espressif.com/viewtopic.php?f=10&t=324

#include	<ESP8266WiFi.h>

IPAddress	local_IP(192,168,4,22);

IPAddress	gateway(192,168,4,9);

IPAddress	subnet(255,255,255,0);

void	setup()

{

		Serial.begin(115200);

		Serial.println();

		Serial.print("Setting	soft-AP	configuration	...	");

		Serial.println(WiFi.softAPConfig(local_IP,	gateway,	subnet)	?	"Ready"	:	"Failed!");

		Serial.print("Setting	soft-AP	...	");

		Serial.println(WiFi.softAP("ESPsoftAP_01")	?	"Ready"	:	"Failed!");

		Serial.print("Soft-AP	IP	address	=	");

		Serial.println(WiFi.softAPIP());

}

void	loop()	{}

Example	output:

Setting	soft-AP	configuration	...	Ready

Setting	soft-AP	...	Ready

Soft-AP	IP	address	=	192.168.4.22

Manage	Network

Once	soft-AP	is	established	you	may	check	the	number	of	stations	connected,	or	shut	it
down,	using	the	following	functions.

softAPgetStationNum

Get	the	count	of	the	stations	that	are	connected	to	the	soft-AP	interface.

WiFi.softAPgetStationNum()

Example	code:

Serial.printf("Stations	connected	to	soft-AP	=	%d\n",	WiFi.softAPgetStationNum());

Example	output:

Soft	Access	Point	Class

44

Stations	connected	to	soft-AP	=	2

Note:	the	maximum	number	of	stations	that	may	be	connected	to	ESP8266	soft-AP	is	five.

softAPdisconnect

Disconnect	stations	from	the	network	established	by	the	soft-AP.

WiFi.softAPdisconnect(wifioff)

Function	will	set	currently	configured	SSID	and	password	of	the	soft-AP	to	null	values.	The
parameter		wifioff		is	optional.	If	set	to		true		it	will	switch	the	soft-AP	mode	off.

Function	will	return		true		if	operation	was	successful	or		false		if	otherwise.

Network	Configuration

Functions	below	provide	IP	and	MAC	address	of	ESP8266's	soft-AP.

softAPIP

Return	IP	address	of	the	soft	access	point's	network	interface.

WiFi.softAPIP()

Returned	value	is	of		IPAddress		type.

Example	code:

Serial.print("Soft-AP	IP	address	=	");

Serial.println(WiFi.softAPIP());

Example	output:

Soft-AP	IP	address	=	192.168.4.1

softAPmacAddress

Return	MAC	address	of	soft	access	point.	This	function	comes	in	two	versions,	which	differ
in	type	of	returned	values.	First	returns	a	pointer,	the	second	a		String	.

Soft	Access	Point	Class

45

Pointer	to	MAC

WiFi.softAPmacAddress(mac)

Function	accepts	one	parameter		mac		that	is	a	pointer	to	memory	location	(an		uint8_t	
array	the	size	of	6	elements)	to	save	the	mac	address.	The	same	pointer	value	is	returned
by	the	function	itself.

Example	code:

uint8_t	macAddr[6];

WiFi.softAPmacAddress(macAddr);

Serial.printf("MAC	address	=	%02x:%02x:%02x:%02x:%02x:%02x\n",	macAddr[0],	macAddr[1],

	macAddr[2],	macAddr[3],	macAddr[4],	macAddr[5]);

Example	output:

MAC	address	=	5e:cf:7f:8b:10:13

MAC	as	a	String

Optionally	you	can	use	function	without	any	parameters	that	returns	a		String		type	value.

WiFi.softAPmacAddress()

Example	code:

Serial.printf("MAC	address	=	%s\n",	WiFi.softAPmacAddress().c_str());

Example	output:

MAC	address	=	5E:CF:7F:8B:10:13

For	code	samples	please	refer	to	separate	section	with	examples	:arrow_right:	dedicated
specifically	to	the	Soft	Access	Point	Class.

Soft	Access	Point	Class

46

ESP8266WiFi	Library	:back:

Soft	Access	Point
Example	below	presents	how	to	configure	ESP8266	to	run	in	soft	access	point	mode	so	Wi-
Fi	stations	can	connect	to	it.	The	Wi-Fi	network	established	by	the	soft-AP	will	be	identified
with	the	SSID	set	during	configuration.	The	network	may	be	protected	with	a	password.	The
network	may	be	also	open,	if	no	password	is	set	during	configuration.

Table	of	Contents
The	Sketch
How	to	Use	It?
How	Does	it	Work?
Can	we	Make	it	Simpler?
Conclusion

The	Sketch

Setting	up	soft-AP	with	ESP8266	can	be	done	with	just	couple	lines	of	code.

Soft	Access	Point	Examples

47

#include	<ESP8266WiFi.h>

void	setup()

{

		Serial.begin(115200);

		Serial.println();

		Serial.print("Setting	soft-AP	...	");

		boolean	result	=	WiFi.softAP("ESPsoftAP_01",	"pass-to-soft-AP");

		if(result	==	true)

		{

				Serial.println("Ready");

		}

		else

		{

				Serial.println("Failed!");

		}

}

void	loop()

{

		Serial.printf("Stations	connected	=	%d\n",	WiFi.softAPgetStationNum());

		delay(3000);

}

How	to	Use	It?

In	line		boolean	result	=	WiFi.softAP("ESPsoftAP_01",	"pass-to-soft-AP")		change		pass-to-
soft-AP		to	some	meaningful	password	and	upload	sketch.	Open	serial	monitor	and	you
should	see:

Setting	soft-AP	...	Ready

Stations	connected	=	0

Stations	connected	=	0

...

Then	take	your	mobile	phone	or	a	PC,	open	the	list	of	available	access	points,	find
	ESPsoftAP_01		and	connect	to	it.	This	should	be	reflected	on	serial	monitor	as	a	new	station
connected:

Stations	connected	=	1

Stations	connected	=	1

...

If	you	have	another	Wi-Fi	station	available	then	connect	it	as	well.	Check	serial	monitor
again	where	you	should	now	see	two	stations	reported.

Soft	Access	Point	Examples

48

How	Does	it	Work?

Sketch	is	small	so	analysis	shouldn't	be	difficult.	In	first	line	we	are	including		ESP8266WiFi	
library:

#include	<ESP8266WiFi.h>

Setting	up	of	the	access	point		ESPsoftAP_01		is	done	by	executing:

	boolean	result	=	WiFi.softAP("ESPsoftAP_01",	"pass-to-soft-AP");

If	this	operation	is	successful	then		result		will	be		true		or		false		if	otherwise.	Basing	on
that	either		Ready		or		Failed!		will	be	printed	out	by	the	following		if	-	else		conditional
statement.

Can	we	Make	it	Simpler?

Can	we	make	this	sketch	even	simpler?	Yes,	we	can!	We	can	do	it	by	using	alternate		if	-
else		statement	as	below:

WiFi.softAP("ESPsoftAP_01",	"pass-to-soft-AP")	?	"Ready"	:	"Failed!"

Such	statement	will	return	either		Ready		or		Failed!		depending	on	result	of
	WiFi.softAP(...)	.	This	way	we	can	considerably	shorten	our	sketch	without	any	changes	to
functionality:

#include	<ESP8266WiFi.h>

void	setup()

{

		Serial.begin(115200);

		Serial.println();

		Serial.print("Setting	soft-AP	...	");

		Serial.println(WiFi.softAP("ESPsoftAP_01",	"pass-to-soft-AP")	?	"Ready"	:	"Failed!")

;

}

void	loop()

{

		Serial.printf("Stations	connected	=	%d\n",	WiFi.softAPgetStationNum());

		delay(3000);

}

Soft	Access	Point	Examples

49

I	believe	this	is	very	neat	piece	of	code.	If		?	:		conditional	operator	is	new	to	you,	I
recommend	to	start	using	it	and	make	your	code	shorter	and	more	elegant.

Conclusion

ESP8266WiFi	library	makes	it	easy	to	turn	ESP8266	into	soft	access	point.

Once	you	try	above	sketch	check	out	WiFiAccessPoint.ino	as	a	next	step.	It	demonstrates
how	to	access	ESP	operating	in	soft-AP	mode	from	a	web	browser.

For	the	list	of	functions	to	manage	ESP	module	in	soft-AP	mode	please	refer	to	the	Soft
Access	Point	Class	:arrow_right:	documentation.

Soft	Access	Point	Examples

50

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/WiFiAccessPoint/WiFiAccessPoint.ino

ESP8266WiFi	Library	:back:

Scan	Class
This	class	is	represented	in	Arduino	WiFi	library	by	scanNetworks()	function.	Developers	of
esp8266	/	Arduino	core	extend	this	functionality	by	additional	methods	and	properties.

Table	of	Contents
Scan	for	Networks

scanNetworks
scanNetworksAsync
scanComplete
scanDelete

Show	Results
SSID
encryptionType
BSSID
BSSIDstr
channel
isHidden
getNetworkInfo

Documentation	of	this	class	is	divided	into	two	parts.	First	covers	functions	to	scan	for
available	networks.	Second	describes	what	information	is	collected	during	scanning	process
and	how	to	access	it.

Scan	for	Networks

Scanning	for	networks	takes	hundreds	of	milliseconds	to	complete.	This	may	be	done	in	a
single	run	when	we	are	triggering	scan	process,	waiting	for	completion,	and	providing	result
-	all	by	a	single	function.	Another	option	is	to	split	this	into	steps,	each	done	by	a	separate
function.	This	way	we	can	execute	other	tasks	while	scanning	is	in	progress.	This	is	called
asynchronous	scanning.	Both	methods	of	scanning	are	documented	below.

scanNetworks

Scan	for	available	Wi-Fi	networks	in	one	run	and	return	the	number	of	networks	that	has
been	discovered.

Scan	Class

51

https://www.arduino.cc/en/Reference/WiFi
https://www.arduino.cc/en/Reference/WiFiScanNetworks

WiFi.scanNetworks()

There	is	on	overload	of	this	function	that	accepts	two	optional	parameters	to	provide
extended	functionality	of	asynchronous	scanning	as	well	as	looking	for	hidden	networks.

WiFi.scanNetworks(async,	show_hidden)

Both	function	parameters	are	of		boolean		type.	They	provide	the	flowing	functionality:

	asysnc		-	if	set	to		true		then	scanning	will	start	in	background	and	function	will	exit
without	waiting	for	result.	To	check	for	result	use	separate	function		scanComplete		that	is
described	below.
	show_hidden		-	set	it	to		true		to	include	in	scan	result	networks	with	hidden	SSID.

scanComplete

Check	for	result	of	asynchronous	scanning.

WiFi.scanComplete()

On	scan	completion	function	returns	the	number	of	discovered	networks.

If	scan	is	not	done,	then	returned	value	is	<	0	as	follows:

Scanning	still	in	progress:	-1
Scanning	has	not	been	triggered:	-2

scanDelete

Delete	the	last	scan	result	from	memory.

WiFi.scanDelete()

scanNetworksAsync

Start	scanning	for	available	Wi-Fi	networks.	On	completion	execute	another	function.

WiFi.scanNetworksAsync(onComplete,	show_hidden)

Function	parameters:

Scan	Class

52

https://en.wikipedia.org/wiki/Function_overloading

	onComplete		-	the	event	handler	executed	when	the	scan	is	done
	show_hidden		-	optional		boolean		parameter,	set	it	to		true		to	scan	for	hidden	networks

Example	code:

#include	"ESP8266WiFi.h"

void	prinScanResult(int	networksFound)

{

		Serial.printf("%d	network(s)	found\n",	networksFound);

		for	(int	i	=	0;	i	<	networksFound;	i++)

		{

				Serial.printf("%d:	%s,	Ch:%d	(%ddBm)	%s\n",	i	+	1,	WiFi.SSID(i).c_str(),	WiFi.chan

nel(i),	WiFi.RSSI(i),	WiFi.encryptionType(i)	==	ENC_TYPE_NONE	?	"open"	:	"");

		}

}

void	setup()

{

		Serial.begin(115200);

		Serial.println();

		WiFi.mode(WIFI_STA);

		WiFi.disconnect();

		delay(100);

		WiFi.scanNetworksAsync(prinScanResult);

}

void	loop()	{}

Example	output:

5	network(s)	found

1:	Tech_D005107,	Ch:6	(-72dBm)

2:	HP-Print-A2-Photosmart	7520,	Ch:6	(-79dBm)

3:	ESP_0B09E3,	Ch:9	(-89dBm)	open

4:	Hack-4-fun-net,	Ch:9	(-91dBm)

5:	UPC	Wi-Free,	Ch:11	(-79dBm)

Show	Results

Functions	below	provide	access	to	result	of	scanning.	It	does	not	matter	if	scanning	has
been	done	in	synchronous	or	asynchronous	mode,	scan	results	are	available	using	the
same	API.

Scan	Class

53

Individual	results	are	accessible	by	providing	a	`networkItem'	that	identifies	the	index	(zero
based)	of	discovered	network.

SSID

Return	the	SSID	of	a	network	discovered	during	the	scan.

WiFi.SSID(networkItem)

Returned	SSID	is	of	the		String		type.	The		networkItem		is	a	zero	based	index	of	network
discovered	during	scan.

encryptionType

Return	the	encryption	type	of	a	network	discovered	during	the	scan.

WiFi.encryptionType(networkItem)

Function	returns	a	number	that	encodes	encryption	type	as	follows:

5	:		ENC_TYPE_WEP		-	WEP
2	:		ENC_TYPE_TKIP		-	WPA	/	PSK
4	:		ENC_TYPE_CCMP		-	WPA2	/	PSK
7	:		ENC_TYPE_NONE		-	open	network
8	:		ENC_TYPE_AUTO		-	WPA	/	WPA2	/	PSK

The		networkItem		is	a	zero	based	index	of	network	discovered	during	scan.

RSSI

Return	the	RSSI	(Received	Signal	Strength	Indication)	of	a	network	discovered	during	the
scan.

WiFi.RSSI(networkItem)

Returned	RSSI	is	of	the		int32_t		type.	The		networkItem		is	a	zero	based	index	of	network
discovered	during	scan.

BSSID

Scan	Class

54

https://en.wikipedia.org/wiki/Received_signal_strength_indication

Return	the	BSSID#Basicservice_set_identification.28BSSID.29)	(Basic	Service	Set
Identification)	that	is	another	name	of	MAC	address	of	a	network	discovered	during	the
scan.

WiFi.BSSID(networkItem)

Function	returns	a	pointer	to	the	memory	location	(an		uint8_t		array	with	the	size	of	6
elements)	where	the	BSSID	is	saved.

If	you	do	not	like	to	pointers,	then	there	is	another	version	of	this	function	that	returns	a
	String	.

WiFi.BSSIDstr(networkItem)

The		networkItem		is	a	zero	based	index	of	network	discovered	during	scan.

channel

Return	the	channel	of	a	network	discovered	during	the	scan.

WiFi.channel(networkItem)

Returned	channel	is	of	the		int32_t		type.	The		networkItem		is	a	zero	based	index	of
network	discovered	during	scan.

isHidden

Return	information	if	a	network	discovered	during	the	scan	is	hidden	or	not.

WiFi.isHidden(networkItem)

Returned	value	if	the		bolean		type,	and		true		means	that	network	is	hidden.	The
	networkItem		is	a	zero	based	index	of	network	discovered	during	scan.

getNetworkInfo

Return	all	the	network	information	discussed	in	this	chapter	above	in	a	single	function	call.

WiFi.getNetworkInfo(networkItem,	&ssid,	&encryptionType,	&RSSI,	*&BSSID,	&channel,	&is

Hidden)

Scan	Class

55

https://en.wikipedia.org/wiki/Service_set_(802.11_network

The		networkItem		is	a	zero	based	index	of	network	discovered	during	scan.	All	other	input
parameters	are	passed	to	function	by	reference.	Therefore	they	will	be	updated	with	actual
values	retrieved	for	particular		networkItem	.	The	function	itself	returns		boolean			true		or
	false		to	confirm	if	information	retrieval	was	successful	or	not.

Example	code:

int	n	=	WiFi.scanNetworks(false,	true);

String	ssid;

uint8_t	encryptionType;

int32_t	RSSI;

uint8_t*	BSSID;

int32_t	channel;

bool	isHidden;

for	(int	i	=	0;	i	<	n;	i++)

{

		WiFi.getNetworkInfo(i,	ssid,	encryptionType,	RSSI,	BSSID,	channel,	isHidden);

		Serial.printf("%d:	%s,	Ch:%d	(%ddBm)	%s	%s\n",	i	+	1,	ssid.c_str(),	channel,	RSSI,	e

ncryptionType	==	ENC_TYPE_NONE	?	"open"	:	"",	isHidden	?	"hidden"	:	"");

}

Example	output:

6	network(s)	found

1:	Tech_D005107,	Ch:6	(-72dBm)

2:	HP-Print-A2-Photosmart	7520,	Ch:6	(-79dBm)

3:	ESP_0B09E3,	Ch:9	(-89dBm)	open

4:	Hack-4-fun-net,	Ch:9	(-91dBm)

5:	,	Ch:11	(-77dBm)		hidden

6:	UPC	Wi-Free,	Ch:11	(-79dBm)

For	code	samples	please	refer	to	separate	section	with	examples	:arrow_right:	dedicated
specifically	to	the	Scan	Class.

Scan	Class

56

ESP8266WiFi	Library	:back:

Scan

To	connect	a	mobile	phone	to	a	hot	spot,	you	typically	open	Wi-Fi	settings	app,	list	available
networks	and	then	pick	the	hot	spot	you	need.	You	can	also	list	the	networks	with	ESP8266
and	here	is	how.

Table	of	Contents
Simple	Scan

Disconnect
Scan	for	Networks
Complete	Example
Example	in	Action

Async	Scan
No	delay()
Setup
When	to	Start
Check	When	Done
Complete	Example
Example	in	Action

Conclusion

Simple	Scan

This	example	shows	the	bare	minimum	code	we	need	to	check	for	the	list	of	available
networks.

Disconnect

To	start	with,	enable	module	in	station	mode	and	then	disconnect.

WiFi.mode(WIFI_STA);

WiFi.disconnect();

Running		WiFi.disconnect()		is	to	shut	down	a	connection	to	an	access	point	that	module
may	have	automatically	made	using	previously	saved	credentials.

Scan	for	Networks

Scan	Examples

57

After	some	delay	to	let	the	module	disconnect,	go	to	scanning	for	available	networks:

int	n	=	WiFi.scanNetworks();

Now	just	check	if	returned		n		if	greater	than	0	and	list	found	networks:

for	(int	i	=	0;	i	<	n;	i++)

{

		Serial.println(WiFi.SSID(i));

}

This	is	that	simple.

Complete	Example

The	sketch	should	have	obligatory		#include	<ESP8266WiFi.h>		and	looks	as	follows:

#include	"ESP8266WiFi.h"

void	setup()

{

		Serial.begin(115200);

		Serial.println();

		WiFi.mode(WIFI_STA);

		WiFi.disconnect();

		delay(100);

}

void	loop()

{

		Serial.print("Scan	start	...	");

		int	n	=	WiFi.scanNetworks();

		Serial.print(n);

		Serial.println("	network(s)	found");

		for	(int	i	=	0;	i	<	n;	i++)

		{

				Serial.println(WiFi.SSID(i));

		}

		Serial.println();

		delay(5000);

}

Example	in	Action

Scan	Examples

58

Upload	this	sketch	to	ESP	module	and	open	a	serial	monitor.	If	there	are	access	points
around	(sure	there	are)	you	will	see	a	similar	list	repeatedly	printed	out:

Scan	start	...	5	network(s)	found

Tech_D005107

HP-Print-A2-Photosmart	7520

ESP_0B09E3

Hack-4-fun-net

UPC	Wi-Free

When	looking	for	the	text		scan	start	...		displayed,	you	will	notice	that	it	takes	noticeable
time	for	the	following	text		n	network(s)	found		to	show	up.	This	is	because	execution	of
	WiFi.scanNetworks()		takes	time	and	our	program	is	waiting	for	it	to	complete	before	moving
to	the	next	line	of	code.	What	if	at	the	same	time	we	would	like	ESP	to	run	time	critical
process	(e.g.	animation)	that	should	not	be	disturbed?

It	turns	out	that	this	is	fairly	easy	to	do	by	scanning	networks	in	async	mode.

Check	it	out	in	next	example	below	that	will	also	demonstrate	printing	out	other	parameters
of	available	networks	besides	SSID.

Async	Scan

What	we	like	to	do,	is	to	trigger	process	of	scanning	for	networks	and	then	return	to
executing	code	inside	the		loop()	.	Once	scanning	is	complete,	at	a	convenient	time,	we	will
check	the	list	of	networks.	The	"time	critical	process"	will	be	simulated	by	a	blinking	LED	at
250ms	period.

We	would	like	the	blinking	pattern	not	be	disturbed	at	any	time.

No	delay()

To	implement	such	functionality	we	should	refrain	from	using	any		delay()		inside	the
	loop()	.	Instead	we	will	define	period	when	to	trigger	particular	action.	Then	inside		loop()	
we	will	check		millis()		(internal	clock	that	counts	milliseconds)	and	fire	the	action	if	the
period	expires.

Please	check	how	this	is	done	in	BlinkWithoutDelay.ino	example	sketch.	Identical	technique
can	be	used	to	periodically	trigger	scanning	for	Wi-Fi	networks.

Setup

Scan	Examples

59

First	we	should	define	scanning	period	and	internal	variable		lastScanMillis		that	will	hold
time	when	the	last	scan	has	been	made.

#define	SCAN_PERIOD	5000

long	lastScanMillis;

When	to	Start

Then	inside	the		loop()		we	will	check	if		SCAN_PERIOD		expired,	so	it	is	time	to	fire	next	scan:

if	(currentMillis	-	lastScanMillis	>	SCAN_PERIOD)

{

		WiFi.scanNetworks(true);

		Serial.print("\nScan	start	...	");

		lastScanMillis	=	currentMillis;

}

Please	note	that		WiFi.scanNetworks(true)		has	an	extra	parameter		true		that	was	not
present	in	previous	example	above.	This	is	an	instruction	to	scan	in	asynchronous	mode,	i.e.
trigger	scanning	process,	do	not	wait	for	result	(processing	will	be	done	in	background)	and
move	to	the	next	line	of	code.	We	need	to	use	asynchronous	mode	otherwise	250ms	LED
blinking	pattern	would	be	disturbed	as	scanning	takes	longer	than	250ms.

Check	When	Done

Finally	we	should	periodically	check	for	scan	completion	to	print	out	the	result	once	ready.	To
do	so,	we	will	use	function		WiFi.scanComplete()	,	that	upon	completion	returns	the	number
of	found	networks.	If	scanning	is	still	in	progress	it	returns	-1.	If	scanning	has	not	been
triggered	yet,	it	would	return	-2.

int	n	=	WiFi.scanComplete();

if(n	>=	0)

{

		Serial.printf("%d	network(s)	found\n",	n);

		for	(int	i	=	0;	i	<	n;	i++)

		{

				Serial.printf("%d:	%s,	Ch:%d	(%ddBm)	%s\n",	i+1,	WiFi.SSID(i).c_str(),	WiFi.channe

l(i),	WiFi.RSSI(i),	WiFi.encryptionType(i)	==	ENC_TYPE_NONE	?	"open"	:	"");

		}

		WiFi.scanDelete();

}

Please	note	function		WiFi.scanDelete()		that	is	deleting	scanning	result	from	memory,	so	it
is	not	printed	out	over	and	over	again	on	each		loop()		run.

Scan	Examples

60

Complete	Example

Complete	sketch	is	below.	The	code	inside		setup()		is	the	same	as	described	in	previous
example	except	for	an	additional		pinMode()		to	configure	the	output	pin	for	LED.

#include	"ESP8266WiFi.h"

#define	BLINK_PERIOD	250

long	lastBlinkMillis;

boolean	ledState;

#define	SCAN_PERIOD	5000

long	lastScanMillis;

void	setup()

	{

		Serial.begin(115200);

		Serial.println();

		pinMode(LED_BUILTIN,	OUTPUT);

		WiFi.mode(WIFI_STA);

		WiFi.disconnect();

		delay(100);

}

void	loop()

{

		long	currentMillis	=	millis();

		//	blink	LED

		if	(currentMillis	-	lastBlinkMillis	>	BLINK_PERIOD)

		{

				digitalWrite(LED_BUILTIN,	ledState);

				ledState	=	!ledState;

				lastBlinkMillis	=	currentMillis;

		}

		//	trigger	Wi-Fi	network	scan

		if	(currentMillis	-	lastScanMillis	>	SCAN_PERIOD)

		{

				WiFi.scanNetworks(true);

				Serial.print("\nScan	start	...	");

				lastScanMillis	=	currentMillis;

		}

		//	print	out	Wi-Fi	network	scan	result	uppon	completion

		int	n	=	WiFi.scanComplete();

		if(n	>=	0)

		{

				Serial.printf("%d	network(s)	found\n",	n);

Scan	Examples

61

				for	(int	i	=	0;	i	<	n;	i++)

				{

						Serial.printf("%d:	%s,	Ch:%d	(%ddBm)	%s\n",	i+1,	WiFi.SSID(i).c_str(),	WiFi.chan

nel(i),	WiFi.RSSI(i),	WiFi.encryptionType(i)	==	ENC_TYPE_NONE	?	"open"	:	"");

				}

				WiFi.scanDelete();

		}

}

Example	in	Action

Upload	above	sketch	to	ESP	module	and	open	a	serial	monitor.	You	should	see	similar	list
printed	out	every	5	seconds:

Scan	start	...	5	network(s)	found

1:	Tech_D005107,	Ch:6	(-72dBm)

2:	HP-Print-A2-Photosmart	7520,	Ch:6	(-79dBm)

3:	ESP_0B09E3,	Ch:9	(-89dBm)	open

4:	Hack-4-fun-net,	Ch:9	(-91dBm)

5:	UPC	Wi-Free,	Ch:11	(-79dBm)

Check	the	LED.	It	should	be	blinking	undisturbed	four	times	per	second.

Conclusion

The	scan	class	API	provides	comprehensive	set	of	methods	to	do	scanning	in	both
synchronous	as	well	as	in	asynchronous	mode.	Therefore	we	can	easy	implement	code	that
is	doing	scanning	in	background	without	disturbing	other	processes	running	on	ESP8266
module.

For	the	list	of	functions	provided	to	manage	scan	mode	please	refer	to	the	Scan	Class
:arrow_right:	documentation.

Scan	Examples

62

ESP8266WiFi	Library	:back:

Client	Class
Methods	documented	for	Client	in	Arduino

1.	 WiFiClient()
2.	 connected()
3.	 connect()
4.	 write()
5.	 print()
6.	 println()
7.	 available()
8.	 read()
9.	 flush()
10.	 stop()

Methods	and	properties	described	further	down	are	specific	to	ESP8266.	They	are	not
covered	in	Arduino	WiFi	library	documentation.	Before	they	are	fully	documented	please
refer	to	information	below.

setNoDelay

setNoDelay(nodelay)

With		nodelay		set	to		true	,	this	function	will	to	disable	Nagle	algorithm.

This	algorithm	is	intended	to	reduce	TCP/IP	traffic	of	small	packets	sent	over	the	network	by
combining	a	number	of	small	outgoing	messages,	and	sending	them	all	at	once.	The
downside	of	such	approach	is	effectively	delaying	individual	messages	until	a	big	enough
packet	is	assembled.

Example:

clinet.setNoDelay(true);

Other	Function	Calls

Client	Class

63

https://www.arduino.cc/en/Reference/WiFiClientConstructor
https://github.com/arduino/Arduino
https://www.arduino.cc/en/Reference/WiFiClient
https://www.arduino.cc/en/Reference/WiFiClientConnected
https://www.arduino.cc/en/Reference/WiFiClientConnect
https://www.arduino.cc/en/Reference/WiFiClientWrite
https://www.arduino.cc/en/Reference/WiFiClientPrint
https://www.arduino.cc/en/Reference/WiFiClientPrintln
https://www.arduino.cc/en/Reference/WiFiClientAvailable
https://www.arduino.cc/en/Reference/WiFiClientRead
https://www.arduino.cc/en/Reference/WiFiClientFlush
https://www.arduino.cc/en/Reference/WiFIClientStop
https://www.arduino.cc/en/Reference/WiFi
https://en.wikipedia.org/wiki/Nagle%27s_algorithm

uint8_t		status	()	

virtual	size_t		write	(const	uint8_t	*buf,	size_t	size)	

size_t		write_P	(PGM_P	buf,	size_t	size)	

size_t		write	(Stream	&stream)	

size_t		write	(Stream	&stream,	size_t	unitSize)	__attribute__((deprecated))	

virtual	int		read	(uint8_t	*buf,	size_t	size)	

virtual	int		peek	()	

virtual	size_t		peekBytes	(uint8_t	*buffer,	size_t	length)	

size_t		peekBytes	(char	*buffer,	size_t	length)	

virtual		operator	bool	()	

IPAddress		remoteIP	()	

uint16_t		remotePort	()	

IPAddress		localIP	()	

uint16_t		localPort	()	

bool		getNoDelay	()

Documentation	for	the	above	functions	is	not	yet	prepared.

For	code	samples	please	refer	to	separate	section	with	examples	:arrow_right:	dedicated
specifically	to	the	Client	Class.

Client	Class

64

ESP8266WiFi	Library	:back:

Client
Let's	write	a	simple	client	program	to	access	a	single	web	page	and	display	its	contents	on	a
serial	monitor.	This	is	typical	operation	performed	by	a	client	to	access	server's	API	to
retrieve	specific	information.	For	instance	we	may	want	to	contact	GitHub's	API	to
periodically	check	the	number	of	open	issues	reported	on	esp8266	/	Arduino	repository.

Table	of	Contents
Introduction
Get	Connected	to	Wi-Fi
Select	a	Server
Instantiate	the	Client
Get	Connected	to	the	Server
Request	the	Data
Read	Reply	from	the	Server
Now	to	the	Sketch
Test	it	Live
Test	it	More
Conclusion

Introduction

This	time	we	are	going	to	concentrate	just	on	retrieving	a	web	page	contents	sent	by	a
server,	to	demonstrate	basic	client's	functionality.	Once	you	are	able	to	retrieve	information
from	a	server,	you	should	be	able	to	phrase	it	and	extract	specific	data	you	need.

Get	Connected	to	Wi-Fi

We	should	start	with	connecting	the	module	to	an	access	point	to	obtain	an	access	to
internet.	The	code	to	provide	this	functionality	has	been	already	discussed	in	chapter	Quick
Start.	Please	refer	to	it	for	details.

Select	a	Server

Once	connected	to	the	network	we	should	connect	to	the	specific	server.	Web	address	of
this	server	is	declared	in		host		character	string	as	below.

Client	Examples

65

https://github.com/esp8266/Arduino/issues

const	char*	host	=	"www.example.com";

I	have	selected		www.example.com		domain	name	and	you	can	select	any	other.	Just	check	if
you	can	access	it	using	a	web	browser.

Instantiate	the	Client

Now	we	should	declare	a	client	that	will	be	contacting	the	host	(server):

WiFiClient	client;

Get	Connected	to	the	Server

In	next	line	we	will	connect	to	the	host	and	check	the	connection	result.	Note		80	,	that	is	the
standard	port	number	used	for	web	access.

if	(client.connect(host,	80))

{

		//	we	are	connected	to	the	host!

}

else

{

		//	connection	failure

}

Client	Examples

66

Request	the	Data

If	connection	is	successful,	we	should	send	request	the	host	to	provide	specific	information
we	need.	This	is	done	using	the	HTTP	GET	request	as	in	the	following	lines:

client.print(String("GET	/")	+	"	HTTP/1.1\r\n"	+

													"Host:	"	+	host	+	"\r\n"	+

													"Connection:	close\r\n"	+

													"\r\n"

);

Read	Reply	from	the	Server

Then,	while	connection	by	our	client	is	still	alive	(while	(client.connected())	,	see	below)
we	can	read	line	by	line	and	print	out	server's	response:

while	(client.connected())

{

		if	(client.available())

		{

				String	line	=	client.readStringUntil('\n');

				Serial.println(line);

		}

}

The	inner		if	(client.available())		is	checking	if	there	are	any	data	available	from	the
server.	If	so,	then	they	are	printed	out.

Once	server	sends	all	requested	data	it	will	disconnect	and	program	will	exit	the		while	
loop.

Now	to	the	Sketch

Complete	sketch,	including	a	case	when	contention	to	the	server	fails,	is	presented	below.

#include	<ESP8266WiFi.h>

const	char*	ssid	=	"********";

const	char*	password	=	"********";

const	char*	host	=	"www.example.com";

void	setup()

{

		Serial.begin(115200);

Client	Examples

67

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

		Serial.println();

		Serial.printf("Connecting	to	%s	",	ssid);

		WiFi.begin(ssid,	password);

		while	(WiFi.status()	!=	WL_CONNECTED)

		{

				delay(500);

				Serial.print(".");

		}

		Serial.println("	connected");

}

void	loop()

{

		WiFiClient	client;

		Serial.printf("\n[Connecting	to	%s	...	",	host);

		if	(client.connect(host,	80))

		{

				Serial.println("connected]");

				Serial.println("[Sending	a	request]");

				client.print(String("GET	/")	+	"	HTTP/1.1\r\n"	+

																	"Host:	"	+	host	+	"\r\n"	+

																	"Connection:	close\r\n"	+

																	"\r\n"

);

				Serial.println("[Response:]");

				while	(client.connected())

				{

						if	(client.available())

						{

								String	line	=	client.readStringUntil('\n');

								Serial.println(line);

						}

				}

				client.stop();

				Serial.println("\n[Disconnected]");

		}

		else

		{

				Serial.println("connection	failed!]");

				client.stop();

		}

		delay(5000);

}

Test	it	Live

Client	Examples

68

Upload	sketch	the	module	and	open	serial	monitor.	You	should	see	a	log	similar	to
presented	below.

First,	after	establishing	Wi-Fi	connection,	you	should	see	confirmation,	that	client	connected
to	the	server	and	send	the	request:

Connecting	to	sensor-net	connected

[Connecting	to	www.example.com	...	connected]

[Sending	a	request]

Then,	after	getting	the	request,	server	will	first	respond	with	a	header	that	specifies	what
type	of	information	will	follow	(e.g.		Content-Type:	text/html),	how	long	it	is	(like		Content-
Length:	1270),	etc.:

[Response:]

HTTP/1.1	200	OK

Cache-Control:	max-age=604800

Content-Type:	text/html

Date:	Sat,	30	Jul	2016	12:30:45	GMT

Etag:	"359670651+ident"

Expires:	Sat,	06	Aug	2016	12:30:45	GMT

Last-Modified:	Fri,	09	Aug	2013	23:54:35	GMT

Server:	ECS	(ewr/15BD)

Vary:	Accept-Encoding

X-Cache:	HIT

x-ec-custom-error:	1

Content-Length:	1270

Connection:	close

End	of	header	is	marked	with	an	empty	line	and	then	you	should	see	the	HTML	code	of
requested	web	page.

Client	Examples

69

<!doctype	html>

<html>

<head>

				<title>Example	Domain</title>

				<meta	charset="utf-8"	/>

				<meta	http-equiv="Content-type"	content="text/html;	charset=utf-8"	/>

				<meta	name="viewport"	content="width=device-width,	initial-scale=1"	/>

				<style	type="text/css">

(...)

</head>

<body>

<div>

				<h1>Example	Domain</h1>

				<p>This	domain	is	established	to	be	used	for	illustrative	examples	in	documents.	Y

ou	may	use	this

				domain	in	examples	without	prior	coordination	or	asking	for	permission.</p>

				<p>More	information...</p>

</div>

</body>

</html>

[Disconnected]

Test	it	More

In	case	server's	web	address	is	incorrect,	or	server	is	not	accessible,	you	should	see	the
following	short	and	simple	message	on	the	serial	monitor:

Connecting	to	sensor-net	connected

[Connecting	to	www.wrong-example.com	...	connection	failed!]

Conclusion

With	this	simple	example	we	have	demonstrated	how	to	set	up	a	client	program,	connect	it
to	a	server,	request	a	web	page	and	retrieve	it.	Now	you	should	be	able	to	write	your	own
client	program	for	ESP8266	and	move	to	more	advanced	dialogue	with	a	server,	like	e.g.
using	HTTPS	protocol	with	the	Client	Secure.

For	more	client	examples	please	check

WiFiClientBasic.ino	-	a	simple	sketch	that	sends	a	message	to	a	TCP	server
WiFiClient.ino	-	this	sketch	sends	data	via	HTTP	GET	requests	to	data.sparkfun.com

Client	Examples

70

https://en.wikipedia.org/wiki/HTTPS
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/WiFiClientBasic/WiFiClientBasic.ino
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/WiFiClient/WiFiClient.ino

service.

For	the	list	of	functions	provided	to	manage	clients,	please	refer	to	the	Client	Class
:arrow_right:	documentation.

Client	Examples

71

ESP8266WiFi	Library	:back:

Client	Secure	Class
Methods	and	properties	described	in	this	section	are	specific	to	ESP8266.	They	are	not
covered	in	Arduino	WiFi	library	documentation.	Before	they	are	fully	documented	please
refer	to	information	below.

loadCertificate

Load	client	certificate	from	file	system.

loadCertificate(file)

This	function	and	the	following		setCertificate		is	to	load	the	client	side	certificate	i.e.	the
certificate	which	ESP	will	provide	when	it	connects	to	the	server.	It	is	applicable	if	the	server
uses	client	side	certificate	authentication	—	most	don't	use	that.

Example	code:

Declarations

#include	<FS.h>

#include	<ESP8266WiFi.h>

#include	<WiFiClientSecure.h>

const	char*	certyficateFile	=	"/client.cer";

setup()	or	loop()

Client	Secure	Class

72

https://www.arduino.cc/en/Reference/WiFi

if	(!SPIFFS.begin())	

{

		Serial.println("Failed	to	mount	the	file	system");

		return;

}

Serial.printf("Opening	%s",	certyficateFile);

File	crtFile	=	SPIFFS.open(certyficateFile,	"r");

if	(!crtFile)

{

		Serial.println("	Failed!");

}

WiFiClientSecure	client;

Serial.print("Loading	%s",	certyficateFile);

if	(!client.loadCertificate(crtFile))

{

		Serial.println("	Failed!");

}

//	proceed	with	connecting	of	client	to	the	host

setCertificate

Load	client	certificate	from	C	array.

setCertificate	(array,	size)

For	a	practical	example	please	check	this	interesting	blog.

Other	Function	Calls

bool		verify	(const	char	*fingerprint,	const	char	*domain_name)	

void		setPrivateKey	(const	uint8_t	*pk,	size_t	size)	

bool		loadCertificate	(Stream	&stream,	size_t	size)	

bool		loadPrivateKey	(Stream	&stream,	size_t	size)	

template<typename	TFile	>		bool		loadPrivateKey	(TFile	&file)

Documentation	for	the	above	functions	is	not	yet	prepared.

For	code	samples	please	refer	to	separate	section	with	examples	:arrow_right:	dedicated
specifically	to	the	Client	Secure	Class.

Client	Secure	Class

73

https://nofurtherquestions.wordpress.com/2016/03/14/making-an-esp8266-web-accessible/

Client	Secure	Class

74

ESP8266WiFi	Library	:back:

Client	Secure
The	client	secure	is	a	client	but	secure.	Application	example	below	will	be	easier	to	follow	if
you	check	similar	and	simpler	example	for	the	"ordinary"	client.	That	being	said	we	will
concentrate	on	discussing	the	code	that	is	specific	to	the	client	secure.

Table	of	Contents
Introduction
The	Sketch
How	to	Verify	Server's	Identity?
Get	the	Fingerprint
Connect	to	the	Server
Is	it	THAT	Server?
GET	Response	from	the	Server
Read	and	Check	the	Response
Does	it	Work?
Conclusion

Introduction

In	this	example	we	will	be	retrieving	information	from	a	secure	server	https://api.github.com.
This	server	is	set	up	in	place	to	provide	specific	and	structured	information	on	GitHub
repositories.	For	instance,	we	may	ask	it	to	provide	us	the	build	status	or	the	latest	version	of
esp8266	/	Adruino	core.

The	build	status	of	esp8266	/	Adruino	may	be	checked	on	the	repository's	home	page	or	on
Travis	CI	site	as	below:

Client	Secure	Examples

75

https://api.github.com
https://github.com
https://github.com/esp8266/Arduino/
https://github.com/esp8266/Arduino#using-git-version
https://travis-ci.org/esp8266/Arduino

GitHub	provides	a	separate	server	with	API	to	access	such	information	in	structured	form	as
JSON.

As	you	may	guess	we	will	use	the	client	secure	to	contact	https://api.github.com	server	and
request	the	build	status.	If	we	open	specific	resource	provided	in	the	API	with	a	web
browser,	the	following	should	show	up:

What	we	need	to	do,	is	to	use	client	secure	to	connect	to		https://api.github.com	,	to	GET
	/repos/esp8266/Arduino/commits/master/status	,	search	for	the	line		"state":	"success"		and
display	"Build	Successful"	if	we	find	it,	or	"Build	Failed"	if	otherwise.

The	Sketch

A	classic	sketch	HTTPSRequest.ino	that	is	doing	what	we	need	is	already	available	among
examples	of	ESP8266WiFi	library.	Please	open	it	to	go	through	it	step	by	step.

How	to	Verify	Server's	Identity?

To	establish	a	secure	connection	with	a	server	we	need	to	verify	server's	identity.	Clients	that
run	on	"regular"	computers	do	it	by	comparing	server's	certificate	with	locally	stored	list	of
trusted	root	certificates.	Such	certificates	take	several	hundreds	of	KB,	so	it	is	not	a	good
option	for	an	ESP	module.	As	an	alternative	we	can	use	much	smaller	SHA1	fingerprint	of
specific	certificate.

Client	Secure	Examples

76

https://developer.github.com/v3/
https://en.wikipedia.org/wiki/JSON
https://api.github.com
https://developer.github.com/v3/repos/statuses/#get-the-combined-status-for-a-specific-ref
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/HTTPSRequest/HTTPSRequest.ino
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi/examples

In	declaration	section	of	code	we	provide	the	name	of		host		and	the	corresponding
	fingerprint	.

const	char*	host	=	"api.github.com";

const	char*	fingerprint	=	"CF	05	98	89	CA	FF	8E	D8	5E	5C	E0	C2	E4	F7	E6	C3	C7	50	DD	5C"

;

Get	the	Fingerprint

We	can	obtain	the		fingerprint		for	specific		host		using	a	web	browser.	For	instance	on
Chrome	press	Ctrl+Shift+I	and	go	to	Security	>	View	Certificate	>	Details	>	Thumbprint.	This
will	show	a	window	like	below	where	you	can	copy	the	fingerprint	and	paste	it	into	sketch.

Connect	to	the	Server

Instantiate	the		WiFiClientSecure		object	and	establish	a	connection	(please	note	we	need	to
use	specific		httpsPort		for	secure	connections):

Client	Secure	Examples

77

WiFiClientSecure	client;

Serial.print("connecting	to	");

Serial.println(host);

if	(!client.connect(host,	httpsPort))	{

		Serial.println("connection	failed");

		return;

}

Is	it	THAT	Server?

Now	verify	if	the	fingerprint	we	have	matches	this	one	provided	by	the	server:

if	(client.verify(fingerprint,	host))	{

		Serial.println("certificate	matches");

}	else	{

		Serial.println("certificate	doesn't	match");

}

If	this	check	fails,	it	is	up	to	you	to	decide	if	to	proceed	further	or	abort	connection.	Also	note
that	certificates	have	specific	validity	period.	Therefore	the	fingerprint	of	certificate	we	have
checked	today,	will	certainly	be	invalid	some	time	later.

Remaining	steps	are	identical	as	described	in	the	non-secure	client	example.

GET	Response	from	the	Server

In	the	next	steps	we	should	execute	GET	command.	This	is	done	is	similar	way	as
discussed	in	non-secure	client	example.

client.print(String("GET	")	+	url	+	"	HTTP/1.1\r\n"	+

													"Host:	"	+	host	+	"\r\n"	+

													"User-Agent:	BuildFailureDetectorESP8266\r\n"	+

													"Connection:	close\r\n\r\n");

After	sending	the	request	we	should	wait	for	a	reply	and	then	process	received	information.

Out	of	received	replay	we	can	skip	response	header.	This	can	be	done	by	reading	until	an
empty	line		"\r"		that	marks	the	end	of	the	header:

Client	Secure	Examples

78

while	(client.connected())	{

		String	line	=	client.readStringUntil('\n');

		if	(line	==	"\r")	{

				Serial.println("headers	received");

				break;

		}

}

Read	and	Check	the	Response

Finally	we	should	read	JSON	provided	by	server	and	check	if	it	contains		{"state":
"success"	:

String	line	=	client.readStringUntil('\n');

if	(line.startsWith("{\"state\":\"success\""))	{

		Serial.println("esp8266/Arduino	CI	successfull!");

}	else	{

		Serial.println("esp8266/Arduino	CI	has	failed");

}

Does	it	Work?

Now	once	you	know	how	it	should	work,	get	the	sketch.	Update	credentials	to	your	Wi-Fi
network.	Check	the	current	fingerprint	of		api.github.com		and	update	it	if	required.	Then
upload	sketch	and	open	a	serial	monitor.

If	everything	is	fine	(including	build	status	of	esp8266	/	Arduino)	you	should	see	message	as
below:

Client	Secure	Examples

79

https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/HTTPSRequest/HTTPSRequest.ino

connecting	to	sensor-net

........

WiFi	connected

IP	address:	

192.168.1.104

connecting	to	api.github.com

certificate	matches

requesting	URL:	/repos/esp8266/Arduino/commits/master/status

request	sent

headers	received

esp8266/Arduino	CI	successfull!

reply	was:

==========

{"state":"success","statuses":[{"url":"https://api.github.com/repos/esp8266/Arduino/st

atuses/8cd331a8bae04a6f1443ff0c93539af4720d8ddf","id":677326372,"state":"success","des

cription":"The	Travis	CI	build	passed","target_url":"https://travis-ci.org/esp8266/Ard

uino/builds/148827821","context":"continuous-integration/travis-ci/push","created_at":

"2016-08-01T09:54:38Z","updated_at":"2016-08-01T09:54:38Z"},{"url":"https://api.github

.com/repos/esp8266/Arduino/statuses/8cd331a8bae04a6f1443ff0c93539af4720d8ddf","id":677

333081,"state":"success","description":"27.62%	(+0.00%)	compared	to	0718188","target_u

rl":"https://codecov.io/gh/esp8266/Arduino/commit/8cd331a8bae04a6f1443ff0c93539af4720d

8ddf","context":"codecov/project","created_at":"2016-08-01T09:59:05Z","updated_at":"20

16-08-01T09:59:05Z"},

(...)

==========

closing	connection

Conclusion

Programming	a	secure	client	is	almost	identical	as	programming	a	non-secure	client.	The
difference	gets	down	to	one	extra	step	to	verify	server's	identity.	Keep	in	mind	limitations	due
to	heavy	memory	usage	that	depends	on	the	strength	of	the	key	used	by	the	server	and
whether	server	is	willing	to	negotiate	the	TLS	buffer	size.

For	the	list	of	functions	provided	to	manage	secure	clients,	please	refer	to	the	Client	Secure
Class	:arrow_right:	documentation.

Client	Secure	Examples

80

https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/

ESP8266WiFi	Library	:back:

Server	Class
Methods	documented	for	the	Server	Class	in	Arduino

1.	 WiFiServer()
2.	 begin()
3.	 available()
4.	 write()
5.	 print()
6.	 println()

Methods	and	properties	described	further	down	are	specific	to	ESP8266.	They	are	not
covered	in	Arduino	WiFi	library	documentation.	Before	they	are	fully	documented	please
refer	to	information	below.

setNoDelay

setNoDelay(nodelay)

With		nodelay		set	to		true	,	this	function	will	to	disable	Nagle	algorithm.

This	algorithm	is	intended	to	reduce	TCP/IP	traffic	of	small	packets	sent	over	the	network	by
combining	a	number	of	small	outgoing	messages,	and	sending	them	all	at	once.	The
downside	of	such	approach	is	effectively	delaying	individual	messages	until	a	big	enough
packet	is	assembled.

Example:

server.begin();

server.setNoDelay(true);

Other	Function	Calls

bool		hasClient	()	

bool		getNoDelay	()	

virtual	size_t		write	(const	uint8_t	*buf,	size_t	size)	

uint8_t		status	()	

void		close	()	

void		stop	()

Server	Class

81

https://www.arduino.cc/en/Reference/WiFiServerConstructor
https://github.com/arduino/Arduino
https://www.arduino.cc/en/Reference/WiFiServer
https://www.arduino.cc/en/Reference/WiFiServerBegin
https://www.arduino.cc/en/Reference/WiFiServerAvailable
https://www.arduino.cc/en/Reference/WiFiServerWrite
https://www.arduino.cc/en/Reference/WiFiServerPrint
https://www.arduino.cc/en/Reference/WiFiServerPrintln
https://www.arduino.cc/en/Reference/WiFi
https://en.wikipedia.org/wiki/Nagle%27s_algorithm

Documentation	for	the	above	functions	is	not	yet	prepared.

For	code	samples	please	refer	to	separate	section	with	examples	:arrow_right:	dedicated
specifically	to	the	Server	Class.

Server	Class

82

ESP8266WiFi	Library	:back:

Server
Setting	up	web	a	server	on	ESP8266	requires	very	title	code	and	is	surprisingly
straightforward.	This	is	thanks	to	functionality	provided	by	versatile	ESP8266WiFi	library.

The	purpose	of	this	example	will	be	to	prepare	a	web	page	that	can	be	opened	in	a	web
browser.	This	page	should	show	current	raw	reading	of	ESP's	analog	input	pin.

Table	of	Contents
The	Object
The	Page
Header	First
The	Page	is	Served
Get	it	Together
Get	it	Run
What	Else?
Conclusion

The	Object

We	will	start	off	by	creating	a	server	object.

WiFiServer	server(80);

The	server	responds	to	clients	(in	this	case	-	web	browsers)	on	port	80,	which	is	a	standard
port	web	browsers	talk	to	web	servers.

The	Page

Then	let's	write	a	short	function		prepareHtmlPage()	,	that	will	return	a		String		class	variable
containing	the	contents	of	the	web	page.	We	will	then	pass	this	variable	to	server	to	pass	it
over	to	a	client.

Server	Examples

83

String	prepareHtmlPage()

{

		String	htmlPage	=	

					String("HTTP/1.1	200	OK\r\n")	+

												"Content-Type:	text/html\r\n"	+

												"Connection:	close\r\n"	+		//	the	connection	will	be	closed	after	completi

on	of	the	response

												"Refresh:	5\r\n"	+		//	refresh	the	page	automatically	every	5	sec

												"\r\n"	+

												"<!DOCTYPE	HTML>"	+

												"<html>"	+

												"Analog	input:		"	+	String(analogRead(A0))	+

												"</html>"	+

												"\r\n";

		return	htmlPage;

}

The	function	does	nothing	fancy	but	just	puts	together	a	text	header	and	HTML	contents	of
the	page.

Header	First

The	header	is	to	inform	client	what	type	of	contents	is	to	follow	and	how	it	will	be	served:

Content-Type:	text/html

Connection:	close

Refresh:	5

In	our	example	the	content	type	is		text/html	,	the	connection	will	be	closed	after	serving
and	the	content	should	requested	by	client	again	every	5	seconds.	The	header	is	concluded
with	an	empty	line		\r\n	.	This	is	to	distinguish	header	from	the	content	to	follow.

<!DOCTYPE	HTML>

<html>

Analog	input:		[Value]

</html>

The	content	contains	two	basic	HTML	tags,	one	to	denote	HTML	document	type		<!DOCTYPE
HTML>		and	another	to	mark	beginning		<html>		and	end		</html>		of	the	document.	Inside
there	is	a	raw	value	read	from	ESP's	analog	input		analogRead(A0)		converted	to	the		String	
type.

String(analogRead(A0))

Server	Examples

84

http://www.w3schools.com/html/
http://www.w3schools.com/html/

The	Page	is	Served

Serving	of	this	web	page	will	be	done	in	the		loop()		where	server	is	waiting	for	a	new	client
to	connect	and	send	some	data	containing	a	request:

void	loop()

{

		WiFiClient	client	=	server.available();	

		if	(client)

		{

				//	we	have	a	new	client	sending	some	request

		}

}

Once	a	new	client	is	connected,	server	will	read	the	client's	request	and	print	it	out	on	a
serial	monitor.

while	(client.connected())

{

		if	(client.available())

		{

				String	line	=	client.readStringUntil('\r');

				Serial.print(line);

		}

}

Request	from	the	client	is	marked	with	an	empty	new	line.	If	we	find	this	mark,	we	can	send
back	the	web	page	and	exit		while()		loop	using		break	.

if	(line.length()	==	1	&&	line[0]	==	'\n')

{

				client.println(prepareHtmlPage());

				break;

}

The	whole	process	is	concluded	by	stopping	the	connection	with	client:

client.stop();

Put	it	Together

Complete	sketch	is	presented	below.

#include	<ESP8266WiFi.h>

Server	Examples

85

const	char*	ssid	=	"********";

const	char*	password	=	"********";

WiFiServer	server(80);

void	setup()

{

		Serial.begin(115200);

		Serial.println();

		Serial.printf("Connecting	to	%s	",	ssid);

		WiFi.begin(ssid,	password);

		while	(WiFi.status()	!=	WL_CONNECTED)

		{

				delay(500);

				Serial.print(".");

		}

		Serial.println("	connected");

		server.begin();

		Serial.printf("Web	server	started,	open	%s	in	a	web	browser\n",	WiFi.localIP().toStr

ing().c_str());

}

//	prepare	a	web	page	to	be	send	to	a	client	(web	browser)

String	prepareHtmlPage()

{

		String	htmlPage	=	

					String("HTTP/1.1	200	OK\r\n")	+

												"Content-Type:	text/html\r\n"	+

												"Connection:	close\r\n"	+		//	the	connection	will	be	closed	after	completi

on	of	the	response

												"Refresh:	5\r\n"	+		//	refresh	the	page	automatically	every	5	sec

												"\r\n"	+

												"<!DOCTYPE	HTML>"	+

												"<html>"	+

												"Analog	input:		"	+	String(analogRead(A0))	+

												"</html>"	+

												"\r\n";

		return	htmlPage;

}

void	loop()

{

		WiFiClient	client	=	server.available();	

		//	wait	for	a	client	(web	browser)	to	connect

		if	(client)

		{

				Serial.println("\n[Client	connected]");

Server	Examples

86

				while	(client.connected())

				{

						//	read	line	by	line	what	the	client	(web	browser)	is	requesting

						if	(client.available())

						{

								String	line	=	client.readStringUntil('\r');

								Serial.print(line);

								//	look	for	the	for	end	of	client's	request,	that	is	marked	with	an	empty	line

								if	(line.length()	==	1	&&	line[0]	==	'\n')

								{

										client.println(prepareHtmlPage());

										break;

								}

						}

				}

				delay(1);	//	give	the	web	browser	time	to	receive	the	data

				//	close	the	connection:

				client.stop();

				Serial.println("[Client	disonnected]");

		}

}

Get	it	Run

Update		ssid		and		password		in	sketch	to	match	credentials	of	your	access	point.	Load
sketch	to	ESP	module	and	open	a	serial	monitor.	First	you	should	see	confirmation	that
module	connected	to	the	access	point	and	the	web	server	started.

Connecting	to	sensor-net	connected

Web	server	started,	open	192.168.1.104	in	a	web	browser

Enter	provided	IP	address	in	a	web	browser.	You	should	see	the	page	served	by	ESP8266:

The	page	would	be	refreshed	every	5	seconds.	Each	time	this	happens,	you	should	see
request	from	the	client	(your	web	browser)	printed	out	on	the	serial	monitor:

Server	Examples

87

[Client	connected]

GET	/	HTTP/1.1

Accept:	text/html,	application/xhtml+xml,	*/*

Accept-Language:	en-US

User-Agent:	Mozilla/5.0	(Windows	NT	6.1;	WOW64;	Trident/7.0;	rv:11.0)	like	Gecko

Accept-Encoding:	gzip,	deflate

Host:	192.168.1.104

DNT:	1

Connection:	Keep-Alive

[client	disonnected]

What	Else?

Looking	on	client	examples	you	will	quickly	find	out	the	similarities	in	protocol	to	the	server.
The	protocol	starts	with	a	header	that	contains	information	what	communication	will	be
about.	It	contains	what	content	type	is	communicated	or	accepted	like		text/html	.	It	states
whether	connection	will	be	kept	alive	or	closed	after	submission	of	the	header.	It	contains
identification	of	the	sender	like		User-Agent:	Mozilla/5.0	(Windows	NT	6.1)	,	etc.

Conclusion

The	above	example	shows	that	a	web	server	on	ESP8266	can	be	set	up	in	almost	no	time.
Such	server	can	easily	stand	up	requests	from	much	more	powerful	hardware	and	software
like	a	PC	with	a	web	browser.	Check	out	other	classes	like	ESP8266WebServer	that	let	you
program	more	advanced	applications.

If	you	like	to	try	another	server	example,	check	out	WiFiWebServer.ino,	that	provides
functionality	of	toggling	the	GPIO	pin	on	and	off	out	of	a	web	browser.

For	the	list	of	functions	provided	to	implement	and	manage	servers,	please	refer	to	the
Server	Class	:arrow_right:	documentation.

Server	Examples

88

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WebServer
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/WiFiWebServer/WiFiWebServer.ino

ESP8266WiFi	Library	:back:

UDP	Class
Methods	documented	for	WiFiUDP	Class	in	Arduino

1.	 begin()
2.	 available()
3.	 beginPacket()
4.	 endPacket()
5.	 write()
6.	 parsePacket()
7.	 peek()
8.	 read()
9.	 flush()
10.	 stop()
11.	 remoteIP()
12.	 remotePort()

Methods	and	properties	described	further	down	are	specific	to	ESP8266.	They	are	not
covered	in	Arduino	WiFi	library	documentation.	Before	they	are	fully	documented	please
refer	to	information	below.

Multicast	UDP

uint8_t		beginMulticast	(IPAddress	interfaceAddr,	IPAddress	multicast,	uint16_t	port)	

virtual	int		beginPacketMulticast	(IPAddress	multicastAddress,	uint16_t	port,	IPAddres

s	interfaceAddress,	int	ttl=1)	

IPAddress		destinationIP	()	

uint16_t		localPort	()

The		WiFiUDP		class	supports	sending	and	receiving	multicast	packets	on	STA	interface.
When	sending	a	multicast	packet,	replace		udp.beginPacket(addr,	port)		with
	udp.beginPacketMulticast(addr,	port,	WiFi.localIP())	.	When	listening	to	multicast	packets,
replace		udp.begin(port)		with		udp.beginMulticast(WiFi.localIP(),	multicast_ip_addr,
port)	.	You	can	use		udp.destinationIP()		to	tell	whether	the	packet	received	was	sent	to	the
multicast	or	unicast	address.

For	code	samples	please	refer	to	separate	section	with	examples	:arrow_right:	dedicated
specifically	to	the	UDP	Class.

UDP	Class

89

https://www.arduino.cc/en/Reference/WiFiUDPConstructor
https://github.com/arduino/Arduino
https://www.arduino.cc/en/Reference/WiFiUDPBegin
https://www.arduino.cc/en/Reference/WiFiUDPAvailable
https://www.arduino.cc/en/Reference/WiFiUDPBeginPacket
https://www.arduino.cc/en/Reference/WiFiUDPEndPacket
https://www.arduino.cc/en/Reference/WiFiUDPWrite
https://www.arduino.cc/en/Reference/WiFiUDPParsePacket
https://www.arduino.cc/en/Reference/WiFiUDPPeek
https://www.arduino.cc/en/Reference/WiFiUDPRead
https://www.arduino.cc/en/Reference/WiFiUDPFlush
https://www.arduino.cc/en/Reference/WiFIUDPStop
https://www.arduino.cc/en/Reference/WiFiUDPRemoteIP
https://www.arduino.cc/en/Reference/WiFiUDPRemotePort
https://www.arduino.cc/en/Reference/WiFi

UDP	Class

90

ESP8266WiFi	Library	:back:

UDP
The	purpose	of	example	application	below	is	to	demonstrate	UDP	communication	between
ESP8266	and	an	external	client.	The	application	(performing	the	role	of	a	server)	is	checking
inside	the		loop()		for	an	UDP	packet	to	arrive.	When	a	valid	packet	is	received,	an
acknowledge	packet	is	sent	back	to	the	client	to	the	same	port	it	has	been	sent	out.

Table	of	Contents
Declarations
Wi-Fi	Connection
UDP	Setup
An	UDP	Packet	Arrived!
An	Acknowledge	Send	Out
Complete	Sketch
How	to	Check	It?
Conclusion

Declarations

At	the	beginning	of	sketch	we	need	to	include	two	libraries:

#include	<ESP8266WiFi.h>

#include	<WiFiUdp.h>

The	first	library		ESP8266WiFi.h		is	required	by	default	if	we	are	using	ESP8266's	Wi-Fi.	The
second	one		WiFiUdp.h		is	needed	specifically	for	programming	of	UDP	routines.

Once	we	have	libraries	in	place	we	need	to	create	a		WiFiUDP		object.	Then	we	should
specify	a	port	to	listen	to	incoming	packets.	There	are	conventions	on	usage	of	port
numbers,	for	information	please	refer	to	the	List	of	TCP	and	UDP	port	numbers.	Finally	we
need	to	set	up	a	buffer	for	incoming	packets	and	define	a	reply	message.

WiFiUDP	Udp;

unsigned	int	localUdpPort	=	4210;

char	incomingPacket[255];

char		replyPacekt[]	=	"Hi	there!	Got	the	message	:-)";

UDP	Examples

91

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

Wi-Fi	Connection

At	the	beginning	of		setup()		let's	implement	typical	code	to	connect	to	an	access	point.	This
has	been	discussed	in	Quick	Start.	Please	refer	to	it	if	required.

UDP	Setup

Once	connection	is	established,	you	can	start	listening	to	incoming	packets.

Udp.begin(localUdpPort);

That	is	all	required	preparation.	We	can	move	to	the		loop()		that	will	be	handling	actual
UDP	communication.

An	UDP	Packet	Arrived!

Waiting	for	incoming	UDP	packed	is	done	by	the	following	code:

int	packetSize	=	Udp.parsePacket();

if	(packetSize)

{

		Serial.printf("Received	%d	bytes	from	%s,	port	%d\n",	packetSize,	Udp.remoteIP().toS

tring().c_str(),	Udp.remotePort());

		int	len	=	Udp.read(incomingPacket,	255);

		if	(len	>	0)

		{

				incomingPacket[len]	=	0;

		}

		Serial.printf("UDP	packet	contents:	%s\n",	incomingPacket);

		(...)

}

Once	a	packet	is	received,	the	code	will	printing	out	the	IP	address	and	port	of	the	sender	as
well	as	the	length	of	received	packet.	If	the	packet	is	not	empty,	its	contents	will	be	printed
out	as	well.

An	Acknowledge	Send	Out

For	each	received	packet	we	are	sending	back	an	acknowledge	packet:

Udp.beginPacket(Udp.remoteIP(),	Udp.remotePort());

Udp.write(replyPacekt);

Udp.endPacket();

UDP	Examples

92

Please	note	we	are	sending	reply	to	the	IP	and	port	of	the	sender	by	using		Udp.remoteIP()	
and		Udp.remotePort()	.

Complete	Sketch

The	sketch	performing	all	described	functionality	is	presented	below:

#include	<ESP8266WiFi.h>

#include	<WiFiUdp.h>

const	char*	ssid	=	"********";

const	char*	password	=	"********";

WiFiUDP	Udp;

unsigned	int	localUdpPort	=	4210;		//	local	port	to	listen	on

char	incomingPacket[255];		//	buffer	for	incoming	packets

char		replyPacekt[]	=	"Hi	there!	Got	the	message	:-)";		//	a	reply	string	to	send	back

void	setup()

{

		Serial.begin(115200);

		Serial.println();

		Serial.printf("Connecting	to	%s	",	ssid);

		WiFi.begin(ssid,	password);

		while	(WiFi.status()	!=	WL_CONNECTED)

		{

				delay(500);

				Serial.print(".");

		}

		Serial.println("	connected");

		Udp.begin(localUdpPort);

		Serial.printf("Now	listening	at	IP	%s,	UDP	port	%d\n",	WiFi.localIP().toString().c_s

tr(),	localUdpPort);

}

void	loop()

{

		int	packetSize	=	Udp.parsePacket();

		if	(packetSize)

		{

				//	receive	incoming	UDP	packets

				Serial.printf("Received	%d	bytes	from	%s,	port	%d\n",	packetSize,	Udp.remoteIP().t

oString().c_str(),	Udp.remotePort());

				int	len	=	Udp.read(incomingPacket,	255);

				if	(len	>	0)

				{

						incomingPacket[len]	=	0;

UDP	Examples

93

				}

				Serial.printf("UDP	packet	contents:	%s\n",	incomingPacket);

				//	send	back	a	reply,	to	the	IP	address	and	port	we	got	the	packet	from

				Udp.beginPacket(Udp.remoteIP(),	Udp.remotePort());

				Udp.write(replyPacekt);

				Udp.endPacket();

		}

}

How	to	Check	It?

Upload	sketch	to	module	and	open	serial	monitor.	You	should	see	confirmation	that	ESP	has
connected	to	Wi-Fi	and	started	listening	to	UDP	packets:

Connecting	to	twc-net-3	connected

Now	listening	at	IP	192.168.1.104,	UDP	port	4210

Now	we	need	another	application	to	send	some	packets	to	IP	and	port	shown	by	ESP
above.

Instead	of	programming	another	ESP,	let's	make	it	easier	and	use	a	purpose	build
application.	I	have	selected	the	Packet	Sender.	It	is	available	for	popular	operating	systems.
Download,	install	and	execute	it.

Once	Packet	Sender's	window	show	up	enter	the	following	information:

Name	of	the	packet
ASCII	text	of	the	message	to	be	send	inside	the	packet
IP	Address	shown	by	our	ESP
Port	shown	by	the	ESP
Select	UDP

What	I	have	entered	is	shown	below:

UDP	Examples

94

https://packetsender.com/download

Now	click	Send.

Immediately	after	that	you	should	see	the	following	on	ESP's	serial	monitor:

Received	12	bytes	from	192.168.1.106,	port	55056

UDP	packet	contents:	Hello	World!

The	text		192.168.1.106,	port	55056		identifies	a	PC	where	the	packet	is	send	from.	You	will
likely	see	different	values.

As	ESP	sends	an	acknowledge	packet	back,	you	should	see	it	in	the	log	in	the	bottom	part
of	the	Packet	Sender's	window.

Conclusion

This	simple	example	shows	how	to	send	and	receive	UDP	packets	between	ESP	and	an
external	application.	Once	tested	in	this	minimal	set	up,	you	should	be	able	to	program	ESP
to	talk	to	any	other	UDP	device.	In	case	of	issues	to	establish	communication	with	a	new
device,	use	the	Packet	Sender	or	other	similar	program	for	troubleshooting

For	review	of	functions	provided	to	send	and	receive	UDP	packets,	please	refer	to	the	UDP
Class	:arrow_right:	documentation.

UDP	Examples

95

https://packetsender.com

ESP8266WiFi	Library	:back:

Generic	Class
Methods	and	properties	described	in	this	section	are	specific	to	ESP8266.	They	are	not
covered	in	Arduino	WiFi	library	documentation.	Before	they	are	fully	documented	please
refer	to	information	below.

onEvent

void		onEvent	(WiFiEventCb	cb,	WiFiEvent_t	event=WIFI_EVENT_ANY)	__attribute__((deprec

ated))

To	see	how	to	use		onEvent		please	check	example	sketch	WiFiClientEvents.ino	available
inside	examples	folder	of	the	ESP8266WiFi	library.

WiFiEventHandler

WiFiEventHandler		onStationModeConnected	(std::function<	void(const	WiFiEventStationMo

deConnected	&)>)	

WiFiEventHandler		onStationModeDisconnected	(std::function<	void(const	WiFiEventStatio

nModeDisconnected	&)>)	

WiFiEventHandler		onStationModeAuthModeChanged	(std::function<	void(const	WiFiEventSta

tionModeAuthModeChanged	&)>)	

WiFiEventHandler		onStationModeGotIP	(std::function<	void(const	WiFiEventStationModeGo

tIP	&)>)	

WiFiEventHandler		onStationModeDHCPTimeout	(std::function<	void(void)>)	

WiFiEventHandler		onSoftAPModeStationConnected	(std::function<	void(const	WiFiEventSof

tAPModeStationConnected	&)>)	

WiFiEventHandler		onSoftAPModeStationDisconnected	(std::function<	void(const	WiFiEvent

SoftAPModeStationDisconnected	&)>)

To	see	a	sample	application	with		WiFiEventHandler	,	please	check	separate	section	with
examples	:arrow_right:	dedicated	specifically	to	the	Generic	Class..

persistent

WiFi.persistent	(persistent)

Generic	Class

96

https://www.arduino.cc/en/Reference/WiFi
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/WiFiClientEvents/WiFiClientEvents.ino

Module	is	able	to	reconnect	to	last	used	Wi-Fi	network	on	power	up	or	reset	basing	on
settings	stored	in	specific	sectors	of	flash	memory.	By	default	these	settings	are	written	to
flash	each	time	they	are	used	in	functions	like		WiFi.begin(ssid,	password)	.	This	happens
no	matter	if	SSID	or	password	has	been	actually	changed.

This	might	result	in	some	wear	of	flash	memory	depending	on	how	often	such	functions	are
called.

Setting		persistent		to		false		will	get	SSID	/	password	written	to	flash	only	if	currently	used
values	do	not	match	what	is	already	stored	in	flash.

Please	note	that	functions		WiFi.disconnect		or		WiFi.softAPdisconnect		reset	currently	used
SSID	/	password.	If		persistent		is	set	to		false	,	then	using	these	functions	will	not	affect
SSID	/	password	stored	in	flash.

To	learn	more	about	this	functionality,	and	why	it	has	been	introduced,	check	issue	report
#1054.

mode

WiFi.mode(m)	

WiFi.getMode()

	WiFi.mode(m)	:	set	mode	to		WIFI_AP	,		WIFI_STA	,		WIFI_AP_STA		or		WIFI_OFF	
	WiFi.getMode()	:	return	current	Wi-Fi	mode	(one	out	of	four	modes	above)

Other	Function	Calls

int32_t		channel	(void)	

bool		setSleepMode	(WiFiSleepType_t	type)	

WiFiSleepType_t		getSleepMode	()	

bool		setPhyMode	(WiFiPhyMode_t	mode)	

WiFiPhyMode_t		getPhyMode	()	

void		setOutputPower	(float	dBm)	

WiFiMode_t		getMode	()	

bool		enableSTA	(bool	enable)	

bool		enableAP	(bool	enable)	

bool		forceSleepBegin	(uint32	sleepUs=0)	

bool		forceSleepWake	()	

int		hostByName	(const	char	*aHostname,	IPAddress	&aResult)

Documentation	for	the	above	functions	is	not	yet	prepared.

Generic	Class

97

https://github.com/esp8266/Arduino/issues/1054

For	code	samples	please	refer	to	separate	section	with	examples	:arrow_right:	dedicated
specifically	to	the	Generic	Class.

Generic	Class

98

ESP8266WiFi	Library	:back:

Generic
In	the	first	example	of	the	ESP8266WiFi	library	documentation	we	have	discussed	how	to
check	when	module	connects	to	the	Wi-Fi	network.	We	were	waiting	until	connection	is
established.	If	network	is	not	available,	the	module	could	wait	like	that	for	ever	doing	nothing
else.	Another	example	on	the	Wi-Fi	asynchronous	scan	mode	demonstrated	how	to	wait	for
scan	result	and	do	in	parallel	something	else	-	blink	a	LED	not	disturbing	the	blink	pattern.
Let's	apply	similar	functionality	when	connecting	the	module	to	an	access	point.

Table	of	Contents
Introduction
What	are	the	Tasks?
Event	Driven	Methods
Register	the	Events
The	Code
Check	the	Code
Conclusion

Introduction

In	example	below	we	will	show	another	cool	example	of	getting	ESP	perform	couple	of	tasks
at	the	same	time	and	with	very	little	programming.

What	are	the	Tasks?

We	would	like	to	write	a	code	that	will	inform	us	that	connection	to	Wi-Fi	network	has	been
established	or	lost.	At	the	same	time	we	want	to	perform	some	time	critical	task.	We	will
simulate	it	with	a	blinking	LED.	Generic	class	provides	specific,	event	driven	methods,	that
will	be	executed	asynchronously,	depending	on	e.g.	connection	status,	while	we	are	already
doing	other	tasks.

Event	Driven	Methods

The	list	of	all	such	methods	is	provided	in	Generic	Class	documentation.

We	would	like	to	use	two	of	them:

Generic	Examples

99

	onStationModeGotIP		called	when	station	is	assigned	IP	address.	This	assignment	may
be	done	by	DHCP	client	or	by	executing		WiFi.config(...)	.
	onStationModeDisconnected		called	when	station	is	disconnected	from	Wi-Fi	network.
The	reason	of	disconnection	does	not	matter.	Event	will	be	triggered	both	if
disconnection	is	done	from	the	code	by	executing		WiFi.disconnect()	,	because	the	Wi-
Fi	signal	is	weak,	or	because	the	access	point	is	switched	off.

Register	the	Events

To	get	events	to	work	we	need	to	complete	just	two	steps:

1.	 Declare	the	event	handler:

WiFiEventHandler	disconnectedEventHandler;

2.	 Select	particular	event	(in	this	case		onStationModeDisconnected)	and	add	the	code	to	be
executed	when	event	is	fired.

disconnectedEventHandler	=	WiFi.onStationModeDisconnected([](const	WiFiEventStatio

nModeDisconnected&	event)

{

	Serial.println("Station	disconnected");

});

If	this	event	is	fired	the	code	will	print	out	information	that	station	has	been
disconnected.

That's	it.	It	is	all	we	need	to	do.

The	Code

The	complete	code,	including	both	methods	discussed	at	the	beginning,	is	provided	below.

Generic	Examples

100

#include	<ESP8266WiFi.h>

const	char*	ssid	=	"********";

const	char*	password	=	"********";

WiFiEventHandler	gotIpEventHandler,	disconnectedEventHandler;

bool	ledState;

void	setup()

{

		Serial.begin(115200);

		Serial.println();

		pinMode(LED_BUILTIN,	OUTPUT);

		gotIpEventHandler	=	WiFi.onStationModeGotIP([](const	WiFiEventStationModeGotIP&	even

t)

		{

				Serial.print("Station	connected,	IP:	");

				Serial.println(WiFi.localIP());

		});

		disconnectedEventHandler	=	WiFi.onStationModeDisconnected([](const	WiFiEventStationM

odeDisconnected&	event)

		{

				Serial.println("Station	disconnected");

		});

		Serial.printf("Connecting	to	%s	...\n",	ssid);

		WiFi.begin(ssid,	password);

}

void	loop()

{

		digitalWrite(LED_BUILTIN,	ledState);

		ledState	=	!ledState;

		delay(250);

}

Check	the	Code

After	uploading	above	sketch	and	opening	a	serial	monitor	we	should	see	a	similar	log:

Connecting	to	sensor-net	...

Station	connected,	IP:	192.168.1.10

Generic	Examples

101

If	you	switch	off	the	access	point,	and	put	it	back	on,	you	will	see	the	following:

Station	disconnected

Station	disconnected

Station	disconnected

Station	connected,	IP:	192.168.1.10

The	process	of	connection,	disconnection	and	printing	messages	is	done	in	background	of
the		loop()		that	is	responsible	for	blinking	the	LED.	Therefore	the	blink	pattern	all	the	time
remains	undisturbed.

Conclusion

Check	out	events	from	generic	class.	They	will	help	you	to	write	more	compact	code.	Use
them	to	practice	splitting	your	code	into	separate	tasks	that	are	executed	asynchronously.

For	review	of	functions	included	in	generic	class,	please	refer	to	the	Generic	Class
:arrow_right:	documentation.

Generic	Examples

102

	Introduction
	Libraries
	Station Class
	Station Examples
	Soft Access Point Class
	Soft Access Point Examples
	Scan Class
	Scan Examples
	Client Class
	Client Examples
	Client Secure Class
	Client Secure Examples
	Server Class
	Server Examples
	UDP Class
	UDP Examples
	Generic Class
	Generic Examples

